Codeforces Round #526 (Div. 2)

A - The Fair Nut and Elevator

  

#include<bits/stdc++.h>
using namespace std;
#define freread freopen("input.txt","r",stdin);
#define frewrite freopen("output.txt","w",stdout);
typedef long long ll;
const int dell[8][2]={{1,2},{1,-2},{2,1},{2,-1},{-1,2},{-1,-2},{-2,1},{-2,-1}};
const int maxn=2e6+7;
const ll mod=998244353;
const int inf=(1LL<<31)-1;
int n,m,k,ar[maxn];


int main()
{
    ll mx=1e9;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)scanf("%d",ar+i);
    for(int i=1;i<=n;i++){
        ll mid=0;
        for(int j=1;j<=n;j++){
            mid += (abs(i-j)+abs(j-1)+abs(i-1))*2LL*ar[j];
        }
        mx=min(mx,mid);
    }
    printf("%lld\n",mx);

    return 0;
}
View Code

 

B - Kvass and the Fair Nut

  

#include<bits/stdc++.h>
using namespace std;
#define freread freopen("input.txt","r",stdin);
#define frewrite freopen("output.txt","w",stdout);
typedef long long ll;
const int dell[8][2]={{1,2},{1,-2},{2,1},{2,-1},{-1,2},{-1,-2},{-2,1},{-2,-1}};
const int maxn=2e6+7;
const ll mod=998244353;
const int inf=(1LL<<31)-1;
int n,m,k,ar[maxn];


int main()
{
    ll s,mx=1e9+1,al=0;
    scanf("%d%lld",&n,&s);
    for(int i=1;i<=n;i++){
        scanf("%d",ar+i);
        mx=min(mx,1LL*ar[i]);
        al+=ar[i];
    }
    if(al<s){
        printf("-1\n");
    }
    else{
        ll last=s-(al-mx*n);
        if(last>0){
            mx=mx - (last-1)/n - 1;
        }
        printf("%d\n",mx);
    }


    return 0;
}
View Code

 

C - The Fair Nut and String

  考虑abaaaba类似的区间,连续的b序列等同于一个b,对每一个a,可以考虑之前一共有多少中状态(s)可以让以此a结尾,对于之前的每一段两个b之间的a 的数量ins,s*=(ins+1),即此连续的a中,可以选任意一个a或者全都不选,共ins+1种情况

  

#include<bits/stdc++.h>
using namespace std;
#define freread freopen("input.txt","r",stdin);
#define frewrite freopen("output.txt","w",stdout);
typedef long long ll;
const ll mod=1e9+7;
const int dell[8][2]={{1,2},{1,-2},{2,1},{2,-1},{-1,2},{-1,-2},{-2,1},{-2,-1}};
const int maxn=2e6+7;
const int inf=(1LL<<31)-1;
int n,m,k,ar[maxn];


char ch[maxn];
int main()
{
    scanf("%s",ch);
    n=strlen(ch);
    char pre='b';
    int ins=1;
    ll ans=0,s=1;
    for(int i=0;i<n;i++){
        if(ch[i]=='a'){
            if(pre=='a'){
                ins++;
                ans = (ans + s)%mod;
            }
            else{
                pre='a';
                ins=1;
                ans = (ans + s)%mod;
            }
        }
        else if(ch[i]=='b'){
            if(pre=='a'){
                s = s*(ins+1)%mod;
                pre='b';
                ins=1;
            }
        }
    }
    printf("%lld\n",ans);
    return 0;
}
View Code

 

D - The Fair Nut and the Best Path

  对树中任意一颗子树的根节点,考虑他的每一颗子树,求出所有子树中对该点的最大贡献值和次大贡献值,则如果任意两颗子树连接的序列作为目标序列的话,权值和一定为mx1+mx2-ar[u](当前点的权值)

#include<bits/stdc++.h>
using namespace std;
#define freread freopen("input.txt","r",stdin);
#define frewrite freopen("output.txt","w",stdout);
typedef long long ll;
const ll mod=1e9+7;
const int dell[8][2]={{1,2},{1,-2},{2,1},{2,-1},{-1,2},{-1,-2},{-2,1},{-2,-1}};
const int maxn=2e6+7;
const int inf=(1LL<<31)-1;
int n,m,k,ar[maxn];
vector<pair<int,int> > ve[maxn];

ll ans=0;
ll dfs(int u,int fa){
    ll mx1=ar[u],mx2=ar[u];
    for(int i=0;i<ve[u].size();i++){
        int v=ve[u][i].first,c=ve[u][i].second;
        if(v==fa)continue;
        ll mid=dfs(v,u);
        mid = mid+ar[u]-c;
        if(mid>mx1){
            mx2=mx1;
            mx1=mid;
        }
        else if(mid>mx2){
            mx2=mid;
        }
    }
    //cout<<u<<' '<<mx1<<" "<<mx2<<endl;
    ans=max(ans, mx1+mx2-ar[u]);
    //ans=max(ans, mx1+pre);
    return mx1;
}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",ar+i);
    }
    for(int i=1;i<n;i++){
        int a,b,c;scanf("%d%d%d",&a,&b,&c);
        ve[a].push_back(make_pair(b,c));
        ve[b].push_back(make_pair(a,c));
    }
    ans=0;
    dfs(1,0);
    printf("%lld\n",ans);

    return 0;
}
View Code

 

E - The Fair Nut and Strings

  此题等同于,在深度为n,字典序在s,t之间的所有字符串形成的不完全二叉树中,对每一个深度存在的节点数目num,ans+=min(num,k);即此深度中对答案的贡献值,为k和num的最小值;

  此问题变为求每一个深度的节点数

  如果在当前深度,二叉树未发生分叉,则ans++

  否则,开始考虑不在s,t上的节点,数量记为pre,深度每+1,pre*=2(每一个当前不在s,t上的节点会产生两个不在s,t上的节点);如果s,t在当前深度的字符分别为(a,b),则会另外产生2个不在s,t上的节点,如果为(a,a)或者(b,b),会产生一个不在s,t上的节点,如果为(b,a)不产生额外的不在s,t上的节点,每次ans更新时,需要另加上s,t上的两个节点,遍历维护pre并更新ans即可;

 

#include<bits/stdc++.h>
using namespace std;
#define freread freopen("input.txt","r",stdin);
#define frewrite freopen("output.txt","w",stdout);
typedef long long ll;
const ll mod=1e9+7;
const int dell[8][2]={{1,2},{1,-2},{2,1},{2,-1},{-1,2},{-1,-2},{-2,1},{-2,-1}};
const int maxn=2e6+7;
const int inf=(1LL<<31)-1;
int n,m,k,ar[maxn];
char c1[maxn],c2[maxn];

int main()
{
    scanf("%d%d",&n,&k);
    scanf("%s",c1);
    scanf("%s",c2);
    ll ans=0,pre=0;
    bool fond=0;
    for(int i=0;i<n;i++){
        ll now=0;
        if(c1[i]=='a'){
            if(c2[i]=='b'){
                now=2;
            }
            else now=1;
        }
        else{
            if(c2[i]=='a')now=0;
            else now=1;
        }
        if(!fond){
            if(now==2)fond=1;
            ans += min(now,k*1LL);
            continue;
        }
        pre=min(k*1LL,pre*2+now);
        ans += min(k*1LL,pre+2);
        //cout<<i<<" "<<min(k*1LL,pre+2)<<endl;
    }
    printf("%lld\n",ans);
    return 0;
}
View Code

 

posted @ 2018-12-11 16:53  wa007  阅读(304)  评论(0编辑  收藏  举报