【6】组合计数学习笔记

前言

关于今天发现自己连快速幂都忘记怎么写这件事

这篇博客是组合计数基础,由于大部分内容都是 6 级,所以我就给整个提高级的组合数学评了 6 级。

组合计数基础

加法原理与乘法原理

加法原理(分类计数原理):完成一件事有 n 类方法,第一类办法有 mi 种,第二类办法有 m2 种……第 n 类办法有 mn 种,那么完成这件事的方法数(记为 N)为:

N=m1+m2++mn

乘法原理(分步计数原理):完成一件事有 n 步,第一类步有 mi 种方法,第二步有 m2 种方法……第 n 步有 mn 种方法,那么完成这件事的方法数(记为 N)为:

N=m1m2mn

加法原理步骤相互独立,任何一种都能独立完成这件事;乘法原理步骤缺一不可,缺少任意一种就不能完成这件事。

排列与组合

排列:从 n 个不同元素中取出 m 个元素,按照不同顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的排列,记作 Anm

排列数计算公式:

Anm=n(n1)(n2)(nm+1)=n!(nm)!

组合:从 n 个不同元素中取出 m 个元素,并成一组,叫做从 n 个不同元素中取出 m 个元素的组合,记作 Cnm

组合数计算公式:

Cnm=AnmAmm=n(n1)(n2)(nm+1)m!=n!m!(nm)!

与顺序有关的为排列问题,与顺序无关的为组合问题。

例题 1


0,1,2,3,4,5 可以组成多少个没有重复数字的五位奇数?


由于首位和末位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。

先排末位有 C31 种方法,再排首位有 C41 种方法,最后排剩下的有 A43 种方法。

最后由乘法原理得到答案 N 为:

N=C31C41A43=288

例题 2


7 种不同的花种在排成一列的花盆里,若两种葵花不种在中间也不种在两边,有多少不同的种法?


由于特殊的两种葵花有特殊要求,应该优先安排,以免不合要求的元素占了这四个位置。

先排两盆特殊的葵花有 A42 种方法,再排剩下的有 A55 种方法。

最后由乘法原理得到答案 N 为:

N=A42A55=1440

组合数的性质:

1C00=Cnn=1

2Cnm=Cnnm

原因:从 n 个不同元素中取出 m 个元素,也就是从 n 个不同元素中不选择 nm 个元素,方法数一样。

3Cmn=Cm1n1+Cm1n

原因:从 n 个不同元素中取出 m 个元素,如果其中一个元素不取,那么就变成了从 n1 个不同元素中取出 m 个元素;如果其中一个元素取,那么就变成了从 n1 个不同元素中取出 m1 个元素。再根据加法原理,得出这条性质。

组合数的求法

求法 1 :杨辉三角递推(预处理)

适用范围:n,m 较小

根据组合数的第 3 条性质,可以递推求出某一范围内的所有组合数。由于最后推完会发现其实是杨辉三角,所以也叫杨辉三角递推。

c[0][0]=1;
for(int i=1;i<=k;i++)c[i][0]=c[i][i]=1;
for(int i=1;i<=k;i++)
   for(int j=1;j<i;j++)
      c[i][j]=c[i-1][j]+c[i-1][j-1];

时间复杂度:O(nm)

求法 2 :逆元(组合数取余)

适用范围:能保证逆元存在时。

由逆元的定义,我们可以推出这个式子:

Cnm=n!m!(nm)!=n!×inv(m!)×inv[(nm)!]

long long power(long long a,long long p,long long m)
{
	long long x=a,ans=1;
	while(p)
	   {
	   	if(p%2==1)ans=(x%m*ans%m)%m;
	   	p/=2;
	   	x=(x%m*x%m)%m;
	   }
	return ans;
}

long long get_c(long long n,long long k,long long m)
{
	k=min(k,n-k);
	long long r1=1,r2=1;
	for(int i=n-k+1;i<=n;i++)r1=(r1%m*i%m)%m;
	for(int i=1;i<=k;i++)r2=(r2%m*i%m)%m;
	return (r1%m*power(r2,m-2,m)%m)%m;
}

对于逆元,直接费马小定理或扩展欧几里得求就行了。【7】逆元学习笔记

时间复杂度:O(n+m)

二项式定理

二项式定理基本形式:

(a+b)n=k=0nCnkakbnk

那么可以推出:

(ax+by)n=k=0nCnk(ax)k(by)nk=k=0n(Cnkakbnk)xkynk

二项式定理可以通过数学归纳法证明,但因为个人实力有限 (教练没讲),就不证明了。

例题 3

P1313 [NOIP2011 提高组] 计算系数

用杨辉三角递推求出组合数,直接套用二项式定理计算系数,用快速幂处理 akbnk 即可。

#include <bits/stdc++.h>
using namespace std;
long long n,m,k,a,b,c[1010][1010];
long long power(long long a,long long p,long long m)
{
	long long x=a,ans=1;
	while(p)
	  {
        if(p%2==1)ans=ans*x%m;
        p/=2;
        x=x*x%m;
	  }
	return ans;
}

int main()
{
	scanf("%lld%lld%lld%lld%lld",&a,&b,&k,&n,&m);
	c[0][0]=1;
	for(long long i=1;i<=k;i++)c[i][0]=c[i][i]=1;
	for(long long i=1;i<=k;i++)
	    for(long long j=1;j<i;j++)
		    c[i][j]=(c[i-1][j]+c[i-1][j-1])%10007;
	printf("%lld\n",((c[k][m]*power(a,n,10007))*power(b,m,10007))%10007); 
	return 0;
}

例题 4

CF1332E Height All the Same

考虑到可以在一个格子上码上两个方块,易得如果每个格子奇偶性相同,则一定可以到达同样高度。对于任意点对 (x,y),我们可以通过找到一条路,路径上可以互达的两点有一边相邻,xbcy,每次增加相邻两个点,这样除了 x,y 各自加 1,其余的点均加 2,奇偶性不变。

所以,我们每次可以改变两个点的奇偶性。对于 nm 为奇数的情况,我们一定可以找到一种奇偶性的数有偶数个,每次修改一对为另一种奇偶性。也就是说,对于任意一种初始情况,均可以修改至完全相同。数量为 (rl+1)nm

对于 nm 为偶数的情况,只有奇偶数个数均为偶数时才满足要求。考虑枚举奇数数量方案数累加,运用乘法原理求出每种情况的方案数。我们先选位置,如果现在有 i 个奇数,则有 Cnmi 种选法。设 [l,r]a 个奇数,b 个偶数,则奇数有 ai 种方法,偶数有 bnmi 种选法。

i=0,2inmCnmiaibnmi

看到这个式子,容易联想到二项式定理。但是这个式子不好转化,需要转化为对于每一个 i 都有一个计算式。我们考虑用整体减去部分,可是还是不行。顺着这个思路,可以想到利用 1 的幂构造摆动数列,当 i 为奇数时,(1)i 刚好为负数,表示减去奇数项;当 i 为偶数时,(1)i 为正数,尽管有重复计算,可是恰好答案中的每种情况算了两遍,最后除以 2 即可。

(rl+1)nmi=0nm(1)iCnmiaibnmi2

直接利用二项式定理进行转化,达到复杂度 O(log(nm))

(rl+1)nm(ba)nm2

#include <bits/stdc++.h>
using namespace std;
long long n,m,l,r,mod=998244353;
long long power(long long a,long long p)
{
	long long x=a,ans=1;
	while(p)
	   {
	   	if(p%2==1)ans=ans*x%mod;
	   	p/=2;
	   	x=x*x%mod;
	   }
	return ans;
}

int main()
{
	scanf("%lld%lld%lld%lld",&n,&m,&l,&r);
	if(n*m%2==1)printf("%lld",power(r-l+1,n*m));
	else 
	    {
	    	long long a=(r-l+1)/2,b=0;
	    	if((r-l+1)%2==1&&l%2==1)a++;
	    	b=r-l+1-a;
	    	printf("%lld",(power(r-l+1,n*m)+power((b-a+mod)%mod,n*m))%mod*499122177%mod);
		}
	return 0;
}

Lucas定理

p 为质数,则有如下式子:

CnmCn/pm/p×Cn%pm%p(modp)

证明可以看文末的博客。

例题 5

P3807 【模板】卢卡斯定理/Lucas 定理

卢卡斯定理模板题,运用卢卡斯定理 CnmCn/pm/p×Cn%pm%p(modp) 把组合数拆成两部分,一部分为 Cn%pm%p ,保证了逆元存在,直接用组合求逆元。另一部分 Cn/pm/p 接着递归就行了。所以,只有 p 为质数时才能使用 Lucas 定理。

注意三个实现细节:

1m=0 时为递归出口,这里应该返回 1 而不是 0

2 :可以预处理出阶乘来降低时间复杂度。

3 :当求组合数时如果 m>n 特判返回 0

#include <bits/stdc++.h>
using namespace std;
long long t,n,k,m,sum[100010];
long long power(long long a,long long p,long long m)
{
	long long x=a,ans=1;
	while(p)
	   {
	   	if(p%2==1)ans=(x%m*ans%m)%m;
	   	p/=2;
	   	x=(x%m*x%m)%m;
	   }
	return ans;
}

long long get_c(long long n,long long k,long long m)
{
	if(k>n)return 0;
	return ((sum[n]%m*power(sum[k],m-2,m)%m)%m*power(sum[n-k],m-2,m)%m)%m;
}

long long lucas(long long n,long long k,long long m)
{
	if(k==0)return 1;
	else return (lucas(n/m,k/m,m)%m*get_c(n%m,k%m,m)%m)%m;
}

int main()
{
	scanf("%lld",&t);
	while(t--)
	   {
	   	scanf("%lld%lld%lld",&n,&k,&m);
	   	sum[0]=1;
	   	for(int i=1;i<=m;i++)sum[i]=(sum[i-1]%m*i%m)%m;
	   	printf("%d\n",lucas(n+k,k,m));
	   }
	return 0;
}

全排列问题

全排列问题

对于字符集 X,将 X所有元素的可能排列全部枚举出来,对含有 N 个元素的集合 X ,排列总个数 S 为 :

S=N!

定义一个 1n 的排列 A ,由 1,2nn 个数字组成。

有重复元素的排列

m11,有 m22,有 mkk,
N 个元素,排列总个数 S 为 :

S=N!m1!m2!mk!

其他杂题

例题 6

P3197 [HNOI2008]越狱

由于只要有一种相同宗教相邻就会发生越狱,不好求,可以正难则反,用总共的数量减去没有相邻的数量。

对于总共的情况,由于每一个位置都能选择 m 个宗教,那么根据乘法原理,总共有 mn 种排列方式。

对于没有相邻的情况,第一个位置有 m 种选择。由于相邻宗教不相同,那么接下来每个位置就有 m1 种选择。根据乘法原理,总共有 m(m1)n1 种排列方式。

用总共的数量减去不满足的数量,就能得到答案 S 了:

S=mnm(m1)n1

注意减法取模要先加上模数。

#include <bits/stdc++.h>
using namespace std;
long long m,n,mod=100003;
long long power(long long a,long long p,long long m)
{
	long long x=a,ans=1;
	while(p)
	   {
	   	if(p%2==1)ans=ans*x%m;
	   	p/=2;
	   	x=x*x%m;
	   }
	return ans;
}

int main()
{
	scanf("%lld%lld",&m,&n);
	printf("%lld",((power(m,n,mod)-m*power(m-1,n-1,mod))%mod+mod)%mod);
	return 0;
}

例题 7

P4821 [中山市选]生成树

由于生成树中没有环,而每个五边形都构成了一个环,所以每个五边形至少需要拆掉一条边。

而一个五角星圈中间的部分也是一个环,也需要拆掉一条边。所以,会有一个五边形被拆掉两条边。

选择被拆掉两条边的五边形有 n 种选法,拆掉两条边的五边形必须拆掉其在中间部分的边,剩下 4 条边可以任意选择一条拆掉。剩下的 n1 个五边形拆掉哪条边没有限制,每个有 5 种拆法,根据乘法原理,共有 5n1 种。

最后根据乘法原理,得到答案 S 为:

S=5n14n

#include <bits/stdc++.h>
using namespace std;
int t,n,mod=2007;
int power(int a,int p,int m)
{
	int x=a,ans=1;
	while(p)
	   {
	   	if(p%2==1)ans=ans*x%m;
	   	p/=2;
	   	x=x*x%m;
	   }
	return ans;
}

int main()
{
	scanf("%d",&t);
	while(t--)
	    {
	    scanf("%d",&n);
	    printf("%d\n",4*n%mod*power(5,n-1,mod)%mod);
	    }
	return 0;
}

递推问题

错排问题

给一个数 n,求有多少 1n 的排列 A 满足对于每个 i ,都满足 Aii

例如当 n=3 时,满足要求的排列只有 2,3,13,1,2

a,b,c,d 表示 n 个数字,A,B,C,D 表示 n 个位置(a 对应 A), 错装的方法总数为记作 fn

假设把 a 错装进 B 中, 然后接下来我们可以分为两种情况:

1b 错装进了 A

那么问题就变为 c,d 个数字(共 n2 个)放入 C,Dn2 个位置时完全装错。由定义得有 fn2 种。

2b 错装进了除 A 之外的一个位置

由于题设中 b 不能放入 A ,我们可以把 A 想象成 B ,就相当于将 b,c,dn1 个数字放入 B,C,Dn 个位置时完全放错。由定义得有 fn1 种。

a 错装进 B 中,有 fn1+fn2 种, 同样 a 错装进 C 中也有 fn1+fn2 所以根据加法原理,求出 f 的递推式为:

fn=(n1)(fn1+fn2)

例题 8

P4071 [SDOI2016]排列计数

由于序列恰好有 m 个位置,使得 ai=i,所以剩下的 nm 个位置满足 aii ,就是上文所述的 fnm ,直接线性递推即可。

使得 ai=im 个位置,本身就有 Cnm 种选法。根据乘法原理,得到答案为:

Cnmfnm

注意需要求逆元以及预处理做到 O(1) 回答询问。

#include <bits/stdc++.h>
using namespace std;
long long t,m,n,cuo[1000020],jc[1000020],inv[1000020],mod=1000000007;
long long power(long long a,long long p,long long m)
{
	long long ans=1,x=a;
	while(p)
	    {
	    	if(p%2==1)ans=ans*x%m;
	    	p/=2;
	    	x=x*x%m;
		}
	return ans;
}

int main()
{
	cuo[0]=1;cuo[2]=1;jc[0]=1;jc[1]=1;inv[0]=1;inv[1]=1;
	for(int i=2;i<=1000010;i++)jc[i]=jc[i-1]*i%mod;
	for(int i=2;i<=1000010;i++)inv[i]=power(jc[i],mod-2,mod)%mod;
	for(int i=3;i<=1000010;i++)cuo[i]=(i-1)*(cuo[i-1]+cuo[i-2])%mod;
	scanf("%lld",&t);
	for(int i=1;i<=t;i++)
	    {
	    	scanf("%lld%lld",&n,&m);
	    	if(n<m)
	    	   {
			   printf("0\n");
			   continue;
		       }
	    	printf("%lld\n",jc[n]*inv[n-m]%mod*inv[m]%mod*cuo[n-m]%mod);
		}
	return 0;
}

第二类Stirling数

n 个有区别的球放到 m 个相同的盒子中,要求无一空盒,其不同的方案数用 S2n,m 表示,称为第二类Stirling数

设有 n 个不同的球,分别用 b1,b2,bn 表示。 从中取出一个球 bnbn的放法有以下两种:

1bn 独自占一个盒子

那么剩下的球只能放在 m1 个盒子中,方案数为 S2n1,m1

2bn 与别的球共占一个盒子

那么可以事先将 b1,b2,bn1n1 个球放入 m 个盒子中,然后再将球 bn 可以放入其中一个盒子中,方案数为 mS2n1,m

根据加法原理,得出第二类Stirling数的递推式:

S2n,m=S2n1,m1+mS2n1,m

例题 9

P1655 小朋友的球

第二类Stirling数板子题,注意需要高精度。

#include <bits/stdc++.h>
using namespace std;
int n,m;
int f[101][101][101]; 
void huge_int(int na,int nb,int a,int b,int c,int d,int m)
{
	int flag=0;
	for(int i=1;i<=100;i++)
	    f[na][nb][i]=f[a][b][i];
	for(int i=100;i>0;i--)
	    {
	    	f[na][nb][i]+=f[c][d][i]*m+flag;
	    	flag=f[na][nb][i]/10;
	    	f[na][nb][i]%=10;
		}
}

void print(int n,int m)
{
	int now=1;
	for(now=1;now<=100;now++)
	    if(f[n][m][now]!=0)break;
	for(int i=now;i<=100;i++)
	    printf("%d",f[n][m][i]);
}

int main()
{
	for(int i=1;i<=100;i++)f[i][1][100]=f[i][i][100]=1;
	for(int i=1;i<=100;i++)
	    for(int j=1;j<=100;j++)
	        if(!(i==j||j==1))huge_int(i,j,i-1,j-1,i-1,j,j);
	while(scanf("%d%d",&n,&m)!=-1)
	     {
	     if(n<m)
	        {
	        	printf("0\n");
	        	continue;
			}
	     print(n,m);
	     putchar('\n');
	     }
	return 0;
}

后记

教练推荐的几篇博客:

lucas定理

不容易系列之(4)——考新郎

posted @   w9095  阅读(17)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· 单线程的Redis速度为什么快?
· 展开说说关于C#中ORM框架的用法!
· Pantheons:用 TypeScript 打造主流大模型对话的一站式集成库
· SQL Server 2025 AI相关能力初探
点击右上角即可分享
微信分享提示