欧拉函数
欧拉函数的定义:
在数论中,对于正整数N,少于或等于N ([1,N]),且与N互质的正整数(包括1)的个数,记作φ(n)。
φ函数的值:
φ(x)=x(1-1/p(1))(1-1/p(2))(1-1/p(3))(1-1/p(4))…..(1-1/p(n)) 其中p(1),p(2)…p(n)为x
的所有质因数;x是正整数; φ(1)=1(唯一和1互质的数,且小于等于1)。注意:每种质因数只有一个。
例如:
φ(5)=5×(1-1/5)=4;
φ(10)=10×(1-1/2)×(1-1/5)=4;
φ(30)=30×(1-1/2)×(1-1/3)×(1-1/5)=8;
φ(49)=49×(1-1/7)=42;
欧拉函数的性质:
(1) p^k型欧拉函数:
若N是质数p(即N=p), φ(n)= φ(p)=p-p^(k-1)=p-1。
若N是质数p的k次幂(即N=p^k),φ(n)=p^k-p^(k-1)=(p-1)p^(k-1)。
(2)mn型欧拉函数
设n为正整数,以φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值。若m,n互质,φ(mn)=(m-1)(n-1)=φ(m)φ(n)。
(3)特殊性质:
若n为奇数时,φ(2n)=φ(n)。
对于任何两个互质 的正整数a,n(n>2)有:a^φ(n)=1 mod n (恒等于)此公式即 欧拉定理
当n=p 且 a与素数p互质(即:gcd(a,p)=1)则上式有: a^(p-1)=1 mod n (恒等于)此公式即 费马小定理
欧拉函数的延伸:
小于或等于n的数中,与n互质的数的总和为:φ(x) * x / 2 (n>1)。
欧拉函数模板
#include <iostream> #include<cstdio> #include<math.h> #include<cstring> #include<vector> #include<map> #include<algorithm> typedef long long LL; using namespace std; const int maxn=6000005; long long f[maxn]; map<string, int>Q; int e[maxn]; ///1、直接求小于或等于n,且与n互质的个数 int Euler(int n) { int res=n; for(int i=2; i<=sqrt(n); i++) { if(n%i==0) { res=res/i*(i-1); while(n%i==0) n/=i; } } if(n>1) res=res/n*(n-1); return res; } ///2、打表筛选模板:求[1, n]之间每个数的质因数的个数 void euler() { memset(e, 0, sizeof(e)); e[1]=1; for(int i=2; i<maxn; i++) { if(!e[i]) { for(int j=i; j<maxn; j+=i) { if(!e[j]) e[j]=j; e[j]=e[j]/i*(i-1); } } } } int main() { int n; for(int i=1; i<10; i++) printf("%d\n", e[i]); while(~scanf("%d", &n)) { printf("%d\n", Euler(n)); } return 0; }
http://www.lightoj.com/volume_showproblem.php?problem=1007
Time Limit: 2 second(s) | Memory Limit: 64 MB |
Mathematically some problems look hard. But with the help of the computer, some problems can be easily solvable.
In this problem, you will be given two integers a and b. You have to find the summation of the scores of the numbers from a to b (inclusive). The score of a number is defined as the following function.
score (x) = n2, where n is the number of relatively prime numbers with x, which are smaller than x
For example,
For 6, the relatively prime numbers with 6 are 1 and 5. So, score (6) = 22 = 4.
For 8, the relatively prime numbers with 8 are 1, 3, 5 and 7. So, score (8) = 42 = 16.
Now you have to solve this task.
Input
Input starts with an integer T (≤ 105), denoting the number of test cases.
Each case will contain two integers a and b (2 ≤ a ≤ b ≤ 5 * 106).
Output
For each case, print the case number and the summation of all the scores from a to b.
Sample Input |
Output for Sample Input |
3 6 6 8 8 2 20 |
Case 1: 4 Case 2: 16 Case 3: 1237 |
Note
Euler's totient function applied to a positive integer n is defined to be the number of positive integers less than or equal to n that are relatively prime to n. is read "phi of n."
Given the general prime factorization of , one can compute using the formula
///开俩数组就内存超限了= =
#include <iostream> #include<cstdio> #include<math.h> #include<cstring> #include<vector> #include<map> #include<algorithm> typedef long long LL; using namespace std; const int maxn=5000010; map<string, int>Q; unsigned long long e[maxn]; void euler() { memset(e, 0, sizeof(e)); e[1]=1; for(int i=2; i<=maxn; i++) { if(!e[i]) { for(int j=i; j<=maxn; j+=i) { if(!e[j]) e[j]=j; e[j]=e[j]/i*(i-1); } } } for(int i=1; i<=maxn; i++) e[i]=e[i-1]+e[i]*e[i]; } int main() { euler(); int T, l, r, cas=1; scanf("%d", &T); while(T--) { scanf("%d%d", &l, &r); printf("Case %d: %llu\n", cas++, e[r]-e[l-1]); } return 0; }