基于Flannel的二进制安装k8s-1.26.1
Rocky Linux 9.1安装和基本设置#
下载镜像并最小化安装#
从Rocky Linux官网下载新版安装镜像ISO,传送门,具体安装过程省略,9.1的root账号默认锁定,并且不允许root用户使用密码进行SSH登录,在安装过程中需要
- 取消锁定root账号
- 允许root用户使用密码进行ssh登录
dnf update -y
reboot
$ uname -r
5.14.0-162.12.1.el9_1.0.2.x86_64
$ cat /etc/redhat-release
Rocky Linux release 9.1 (Blue Onyx)
主机安全设置#
## 关闭swap分区
swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab
## 禁用防火墙
systemctl stop firewalld
systemctl disable firewalld
## 禁用selinux
sed -i 's/enforcing/disabled/' /etc/selinux/config
setenforce 0
安装需要的软件和工具#
dnf install -y wget tree curl bash-completion jq vim net-tools telnet git lrzsz bridge-utils \
chrony
设置NTP服务#
RL9.1默认安装chrony服务并且服务已经启动,如果需要修改NTP服务器可以修改配置文件/etc/chrony.conf
## 使用客户端进行验证
$ chronyc sources
MS Name/IP address Stratum Poll Reach LastRx Last sample
===============================================================================
^+ tick.ntp.infomaniak.ch 1 7 373 98 +414us[ +414us] +/- 107ms
^* time.cloudflare.com 3 7 377 100 +1955us[+2064us] +/- 107ms
^+ time.cloudflare.com 3 7 367 99 -9897us[-9897us] +/- 117ms
^+ electrode.felixc.at 3 7 377 98 +1295us[+1295us] +/- 148ms
配置unlimit#
## 文件句柄
ulimit -SHn 65535
$ cat > /etc/security/limits.conf <<EOF
* soft nofile 655360
* hard nofile 131072
* soft nproc 655350
* hard nproc 655350
* soft memlock unlimited
* hard memlock unlimited
EOF
安装ipvsadmin#
dnf install -y ipvsadm ipset sysstat conntrack libseccomp
$ cat > /etc/modules-load.d/ipvs.conf <<EOF
ip_vs
ip_vs_rr
ip_vs_wrr
ip_vs_sh
nf_conntrack
ip_tables
ip_set
xt_set
ipt_set
ipt_rpfilter
ipt_REJECT
ipip
EOF
systemctl restart systemd-modules-load.service
$ lsmod | grep ip_vs
ip_vs_sh 16384 0
ip_vs_wrr 16384 0
ip_vs_rr 16384 0
ip_vs 188416 6 ip_vs_rr,ip_vs_sh,ip_vs_wrr
nf_conntrack 176128 1 ip_vs
nf_defrag_ipv6 24576 2 nf_conntrack,ip_vs
libcrc32c 16384 3 nf_conntrack,xfs,ip_vs
修改内核参数#
$ cat > /etc/sysctl.d/95-k8s-sysctl.conf <<EOF
net.ipv4.ip_forward = 1
net.bridge.bridge-nf-call-iptables = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-arptables = 1
fs.may_detach_mounts = 1
vm.swappiness = 0
vm.overcommit_memory=1
vm.panic_on_oom=0
vm.max_map_count=655360
fs.inotify.max_user_watches=89100
fs.file-max=52706963 # 打开最大文件数
fs.nr_open=52706963
fs.aio-max-nr=52706963
net.netfilter.nf_conntrack_max=2310720
net.ipv4.tcp_keepalive_time = 600
net.ipv4.tcp_keepalive_probes = 3
net.ipv4.tcp_keepalive_intvl =15
net.ipv4.tcp_tw_recycle=0
net.ipv4.tcp_max_tw_buckets = 36000
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_max_orphans = 327680
net.ipv4.tcp_orphan_retries = 3
net.ipv4.tcp_syncookies = 1
net.ipv4.tcp_max_syn_backlog = 16384
net.ipv4.ip_conntrack_max = 65536
net.ipv4.tcp_max_syn_backlog = 16384
net.ipv4.tcp_timestamps = 0
net.core.somaxconn = 16384
EOF
$ sysctl --system
设置网卡IP#
使用nmtui
图形化工具修改网卡ip地址为静态。
设置主机名称#
hostnamectl set-hostname m01 && bash
hostnamectl set-hostname w01 && bash
hostnamectl set-hostname w02 && bash
设定hosts文件,用于主机名解析#
$ cat >> /etc/hosts <<EOF
192.168.1.10 m01
192.168.1.11 w01
192.168.5.10 w02
EOF
环境规划#
对于学习来说,最主要的是使用k8s,熟悉原理以及操作,所以搭建最简单环境进行学习,学会后可以进行扩展到多master,多etcd以及前端添加lb等;2台worker节点之间跨子网,用于CNI跨子网的配置和验证。
本次部署默认是在m01
节点上下载生成配置,然后将配置分发到2台worker节点。
部署架构#
m01和w01在相同的网段(192.168.1.0/24),w02在其他网段(192.168.5.0/24),2个网段使用VyOS路由器互相连接起来
网络规划#
- 节点网络:192.168.1.0/24,192.168.5.0/24,跨不同子网的node节点
- service网络:10.96.0.0/16
- pod网络:172.16.0.0/16
主机规划#
主机名 | IP地址 | 角色 | 安装组件 |
---|---|---|---|
m01 | 192.168.1.10 | master | apiserver,controller-manager,scheduler,etcd,kubectl,kubelet,kube-proxy,containerd |
w01 | 192.168.1.11 | worker | kubelet,kube-proxy,containerd |
w02 | 192.168.5.10 | worker | kubelet,kube-proxy,containerd |
软件版本#
- kubernets:1.26.1
- etcd:3.5.7
- cfssl:1.6.3
- coredns:1.10.0
- metrics-server:0.6.1
- containerd:1.6.16
- runc:1.1.4
基本设定#
配置免密认证#
## 安装sshpass
dnf install -y sshpass
## 生成密钥文件
ssh-keygen -f /root/.ssh/id_rsa -P ''
## 分发密钥文件
export HOSTS="m01 w01 w02 192.168.1.10 192.168.1.11 192.168.5.10"
export SSHPASS=tony
$ for host in $HOSTS; do \
sshpass -e ssh-copy-id -o StrictHostKeyChecking=no $host; \
done
## 测试免密登陆
$ ssh w01
Last login: Fri Feb 3 20:37:46 2023 from 192.168.1.10
安装PKI管理工具-cfssl#
检查下载新版本的工具,传送门
## 下载cfssl二进制程序
wget https://github.com/cloudflare/cfssl/releases/download/v1.6.3/cfssl_1.6.3_linux_amd64 -O /usr/local/bin/cfssl
wget https://github.com/cloudflare/cfssl/releases/download/v1.6.3/cfssljson_1.6.3_linux_amd64 -O /usr/local/bin/cfssljson
## 添加执行权限
chmod +x /usr/local/bin/cfssl*
安装配置containerd#
下载二进制文件#
检查软件的版本,传送门,下载带cri-containerd-cni
开头的文件,这个tar包里面包含了containerd以及crictl管理工具和cni网络插件,下载后可以使用tar -tf <包名>
,查看tar包的内容。
## 创建配置生成目录
mkdir -p /root/containerd/{app,bin,cnibin,config,service}
cd /root/containerd
## 下载二进制文件
wget https://github.com/containerd/containerd/releases/download/v1.6.16/cri-containerd-cni-1.6.16-linux-amd64.tar.gz -O app/containerd.tar.gz
## 解压
tar -xf app/containerd.tar.gz --strip-components=3 -C bin usr/local/bin/{containerd*,crictl,ctr}
tar -xf app/containerd.tar.gz --strip-components=3 -C cnibin opt/cni/bin/
## 下载runc
## 查看版本https://github.com/opencontainers/runc/releases/
wget https://github.com/opencontainers/runc/releases/download/v1.1.4/runc.amd64 -O bin/runc
## 添加执行权限
chmod +x bin/runc
服务启动service文件#
生成脚本containerd_config.sh
$ cat <<'EOF'> containerd_config.sh
## 创建service文件
cat > service/containerd.service <<EOF1
[Unit]
Description=containerd container runtime
Documentation=https://containerd.io
After=network.target local-fs.target
[Service]
ExecStartPre=-/sbin/modprobe overlay
ExecStart=/usr/local/bin/containerd
Type=notify
Delegate=yes
KillMode=process
Restart=always
RestartSec=5
## Having non-zero Limit*s causes performance problems due to accounting overhead
## in the kernel. We recommend using cgroups to do container-local accounting.
LimitNPROC=infinity
LimitCORE=infinity
LimitNOFILE=infinity
## Comment TasksMax if your systemd version does not supports it.
## Only systemd 226 and above support this version.
TasksMax=infinity
OOMScoreAdjust=-999
[Install]
WantedBy=multi-user.target
EOF1
## containerd需要加载2个内核模块
cat > config/containerd.conf <<EOF2
overlay
br_netfilter
EOF2
EOF
执行
bash -x containerd_config.sh
## 在service目录下生成
├── containerd.service
## 在config目录下生成
├── containerd.conf
生成配置文件,并按需修改#
## 创建配置文件
./bin/containerd config default > config/config.toml
## 在config目录下生成
├── config.toml
## bin_dir:containerd二进制文件
## conf_dir: cni 插件存储路径
$ vim config/config.toml
## root:容器存储路径,默认/var/lib/containerd,也可以修改成磁盘空间充足的路径
root = "/data/containerd"
## sandbox_image:pause镜像名称以及镜像tag,国内无法访问,可以更换成阿里云的
#sandbox_image = "registry.k8s.io/pause:3.6"
sandbox_image = "registry.aliyuncs.com/google_containers/pause:3.7"
## 配置SystemdCgroup = true,使用systemd启动的发行版,使用systemd管理cgroup
[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc.options]
# SystemdCgroup = false
SystemdCgroup = true
## 配置镜像加速,参考https://github.com/containerd/containerd/blob/main/docs/cri/config.md#registry-configuration
[plugins."io.containerd.grpc.v1.cri".registry]
# config_path = ""
config_path = "/etc/containerd/certs.d"
## 阿里云的加速地址可以更换成自己的地址
$ cat <<EOF> config/hosts.toml
server = "https://docker.io"
[host."https://en2560w3.mirror.aliyuncs.com",host."https://registry.docker-cn.com"]
capabilityes = ["pull", "resolve"]
EOF
## 在config目录下生成
├── hosts.toml
分发二进制文件、配置及创建相关路径#
$ for i in m01 w01 w02; do \
echo ">>> $i"; \
ssh $i "mkdir -p /etc/containerd/certs.d/docker.io"; \
ssh $i "mkdir -p /etc/cni/net.d"; \
ssh $i "mkdir -p /opt/cni/bin"; \
ssh $i "mkdir -p /opt/containerd"; \
scp bin/* $i:/usr/local/bin/; \
scp cnibin/* $i:/opt/cni/bin/; \
scp service/containerd.service $i:/usr/lib/systemd/system/; \
scp config/config.toml $i:/etc/containerd/; \
scp config/containerd.conf $i:/etc/modules-load.d/; \
scp config/hosts.toml $i:/etc/containerd/certs.d/docker.io/; \
done
启动containerd服务#
$ for i in m01 w01 w02; do \
echo ">>> $i"; \
ssh $i "systemctl restart systemd-modules-load.service"; \
ssh $i "systemctl daemon-reload"; \
ssh $i "systemctl enable containerd"; \
ssh $i "systemctl restart containerd --no-block"; \
ssh $i "systemctl is-active containerd"; \
done
测试containerd#
Containerd有namespaces
的概念,不同namespaces
之间进行隔离,镜像和容器均不可见
## 查看名称空间
ctr ns list
## 创建ns
ctr ns create test
## 测试拉取busybox镜像,使用ctr拉取,镜像的路径要写全,没有指明ns,默认保存在default命名空间
ctr images pull docker.io/library/busybox:latest
## 查看镜像,test命名空间没有镜像
ctr -n test images list
## 查看镜像
ctr images list
## 启动一个容器
ctr run -d docker.io/library/busybox:latest busybox
## 查看容器
$ ctr container ls
TASK PID STATUS
busybox 20808 RUNNING
$ ctr task ls
## TIP:
## 在containerd中,container和task是分离的,container描述的是容器分配和附加资源的元数据对象,是静态内容,task
## 是任务是系统上一个活动的、正在运行的进程。 task应该在每次运行后删除,而container可以被多次使用、更新和查询。这
## 点和docker中container定义是不一样的。
配置crictl#
使用containerd命令管理镜像较底层,对人类不友好,k8s内部提供了crictl来管理镜像,相当于docker命令行工具,crictl是遵循CRI接口规范的一个命令行工具,通常用它来检查和管理kubelet节点上的容器运行时和镜像,使用cricti工具之前,需要先创建crictl的配置文件。
生成脚本gen_crictl_config.sh
$ cat <<'EOF'> gen_crictl_config.sh
## 注意runtime-endpoint和image-endpoint必须与/etc/containerd/config.toml中配置保持一致。
cat > config/crictl.yaml <<EOF1
runtime-endpoint: unix:///run/containerd/containerd.sock
image-endpoint: unix:///run/containerd/containerd.sock
timeout: 10
debug: false
EOF1
EOF
执行
bash -x gen_crictl_config.sh
## 在config目录下生成
├── crictl.yaml
分发crictl.yaml
$ for i in m01 w01 w02; do \
echo ">>> $i"; \
scp config/crictl.yaml $i:/etc/
done
测试crictl#
crictl的使用方法基本和docker用法相同
## 拉取镜像
crictl pull busybox:1.28
## 列出所有cri容器镜像
$ crictl images
部署etcd集群#
下载etcd#
## 创建保存配置的文件夹
mkdir -p /root/etcd/{bin,config,service,ssl,app}
cd /root/etcd
## 下载etcd二进制文件
## github二进制包下载地址:https://github.com/etcd-io/etcd/releases
wget https://github.com/etcd-io/etcd/releases/download/v3.5.7/etcd-v3.5.7-linux-amd64.tar.gz -O app/etcd.tar.gz
tar -xf app/etcd.tar.gz --strip-components=1 -C bin/ etcd-v3.5.7-linux-amd64/etcd{,ctl}
生成etcd使用的证书#
生成脚本gen_etcd_cert.sh
$ cat <<'EOF'> gen_etcd_cert.sh
## example: bash gen_etcd_cert.sh 127.0.0.1,m01,m02,m03,192.168.1.51,192.168.1.52,192.168.1.53
HOSTNAME=$1
## etcd ca的配置文件
cat > ca-config.json <<EOF1
{
"signing": {
"default": {
"expiry": "876000h"
},
"profiles": {
"peer": {
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
],
"expiry": "876000h"
}
}
}
}
EOF1
## etcd的ca证书签名请求文件
cat > etcd-ca-csr.json <<EOF2
{
"CN": "etcd",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "GuangZhou",
"O": "etcd",
"OU": "Etcd Security"
}
],
"ca": {
"expiry": "876000h"
}
}
EOF2
## 生成etcd集群使用的ca根证书
cfssl gencert \
-initca etcd-ca-csr.json | cfssljson -bare ssl/etcd-ca
## 生成etcd集群使用的证书申请签名文件
cat > etcd-csr.json <<EOF3
{
"CN": "etcd",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "GuangZhou",
"O": "etcd",
"OU": "Etcd Security"
}
]
}
EOF3
## 生产部署etcd集群可以使用3张证书用于不同认证。
## 1.etcd server持有的服务端证书
## 2.peer集群中节点互相通信使用的客户端证书
## 3.配置在kube-apiserver中用来与etcd-server做双向认证的客户端证书
## 学习环境使用一张peer类型的证书进行认证
cfssl gencert \
-ca=ssl/etcd-ca.pem \
-ca-key=ssl/etcd-ca-key.pem \
-config=ca-config.json \
-hostname=${HOSTNAME} \
-profile=peer etcd-csr.json | cfssljson -bare ssl/etcd
EOF
执行
## example:bash gen_etcd_cert.sh <etcd相关主机ip及主机名>
bash -x gen_etcd_cert.sh 127.0.0.1,m01,192.168.1.10
## 在ssl目录下生成
├── etcd-ca.csr
├── etcd-ca-key.pem
├── etcd-ca.pem
├── etcd.csr
├── etcd-key.pem
├── etcd.pem
生成参数文件及启动service文件#
生成脚本etcd_config.sh
$ cat <<'EOF'> etcd_config.sh
## example: bash etcd_config.sh m01 192.168.1.51 m02=https://192.168.1.52:2380,m03=https://192.168.1.53:2380
ETCD_NAME=$1
ETCD_IP=$2
ETCD_CLUSTER=$3
WORK_DIR=/opt/etcd
ETCD_CONF_DIR=/opt/etcd/config
ETCD_CA_CERT=etcd-ca.pem
ETCD_SERVER_CERT_PREFIX=etcd
cat > config/etcd.config.yaml.$1 <<EOF1
name: '${ETCD_NAME}'
data-dir: ${WORK_DIR}/data
wal-dir: ${WORK_DIR}/data/wal
snapshot-count: 5000
heartbeat-interval: 100
election-timeout: 1000
quota-backend-bytes: 0
listen-peer-urls: 'https://${ETCD_IP}:2380'
listen-client-urls: 'https://${ETCD_IP}:2379,http://127.0.0.1:2379'
max-snapshots: 3
max-wals: 5
cors:
initial-advertise-peer-urls: 'https://${ETCD_IP}:2380'
advertise-client-urls: 'https://${ETCD_IP}:2379'
discovery:
discovery-fallback: 'proxy'
discovery-proxy:
discovery-srv:
initial-cluster: '${ETCD_NAME}=https://${ETCD_IP}:2380,${ETCD_CLUSTER}'
initial-cluster-token: 'etcd-cluster'
initial-cluster-state: 'new'
strict-reconfig-check: false
enable-v2: true
enable-pprof: true
proxy: 'off'
proxy-failure-wait: 5000
proxy-refresh-interval: 30000
proxy-dial-timeout: 1000
proxy-write-timeout: 5000
proxy-read-timeout: 0
client-transport-security:
cert-file: '${WORK_DIR}/ssl/${ETCD_SERVER_CERT_PREFIX}.pem'
key-file: '${WORK_DIR}/ssl/${ETCD_SERVER_CERT_PREFIX}-key.pem'
client-cert-auth: true
trusted-ca-file: '${WORK_DIR}/ssl/${ETCD_CA_CERT}'
auto-tls: true
peer-transport-security:
cert-file: '${WORK_DIR}/ssl/${ETCD_SERVER_CERT_PREFIX}.pem'
key-file: '${WORK_DIR}/ssl/${ETCD_SERVER_CERT_PREFIX}-key.pem'
peer-client-cert-auth: true
trusted-ca-file: '${WORK_DIR}/ssl/${ETCD_CA_CERT}'
auto-tls: true
debug: false
log-package-levels:
log-outputs: [default]
force-new-cluster: false
EOF1
cat > service/etcd.service <<EOF2
[Unit]
Description=Etcd Service
Documentation=https://coreos.com/etcd/docs/latest/
After=network.target
[Service]
Type=notify
ExecStart=/usr/local/bin/etcd \\
--config-file=${ETCD_CONF_DIR}/etcd.config.yaml
Restart=on-failure
RestartSec=10
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
Alias=etcd3.service
EOF2
EOF
执行
## example:./etcd_config.sh <ETCD主机名> <ETCD_IP> <ETCD集群其他的信息>
bash -x etcd_config.sh m01 192.168.1.10
## 在config目录下生成
├── etcd.config.yaml.m01
## 在service目录下生成
├── etcd.service
分发etcd二进制文件、证书、配置及服务文件#
$ for i in m01; do \
echo ">>> $i"; \
ssh $i "mkdir -p /opt/etcd/{config,data,ssl}"; \
scp bin/etcd* $i:/usr/local/bin; \
scp ssl/etcd{,-key,-ca}.pem $i:/opt/etcd/ssl/; \
scp config/etcd.config.yaml.$i $i:/opt/etcd/config/etcd.config.yaml; \
scp service/etcd.service $i:/usr/lib/systemd/system/; \
done
启动etcd服务#
$ for i in m01; do \
echo ">>> $i"; \
ssh $i "systemctl daemon-reload"; \
ssh $i "systemctl enable etcd"; \
ssh $i "systemctl restart etcd --no-block"; \
ssh $i "systemctl is-active etcd"; \
done
验证集群#
## 查看集群
export ETCDCTL_API=3
export ENDPOINTS=192.168.1.10:2379
etcdctl \
--endpoints="$ENDPOINTS" \
--cacert=/opt/etcd/ssl/etcd-ca.pem \
--cert=/opt/etcd/ssl/etcd.pem \
--key=/opt/etcd/ssl/etcd-key.pem endpoint status \
--write-out=table
etcdctl \
--endpoints="$ENDPOINTS" \
--cacert=/opt/etcd/ssl/etcd-ca.pem \
--cert=/opt/etcd/ssl/etcd.pem \
--key=/opt/etcd/ssl/etcd-key.pem member list \
--write-out=table
etcdctl \
--endpoints="$ENDPOINTS" \
--cacert=/opt/etcd/ssl/etcd-ca.pem \
--cert=/opt/etcd/ssl/etcd.pem \
--key=/opt/etcd/ssl/etcd-key.pem endpoint health \
--write-out=table
部署k8s组件#
在master节点-m01
部署3个服务
- kube-apiserver
- kube-controller-manager
- kube-scheduler
下载kubernets二进制文件#
下载二进制文件,传送门
## 创建配置目录
mkdir -p /root/k8s/{app,ssl,config,service,bin,kubeconfig}
cd /root/k8s
## 下载kubernets二进制包,按版本直接修改v1.26.1 -> v1.xx.x
wget https://dl.k8s.io/v1.26.1/kubernetes-server-linux-amd64.tar.gz -O app/kubernetes-server.tar.gz
## 解压
tar -xf app/kubernetes-server.tar.gz --strip-components=3 -C bin/ \
kubernetes/server/bin/kube{let,ctl,-apiserver,-controller-manager,-scheduler,-proxy}
生成k8s使用的ca证书#
生成脚本gen_k8s_ca_cert.sh
$ cat <<'EOF'> gen_k8s_ca_cert.sh
cat > ca-config.json <<EOF1
{
"signing": {
"default": {
"expiry": "87600h"
},
"profiles": {
"peer": {
"expiry": "87600h",
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
]
}
}
}
}
EOF1
## 生成CA证书签名请求的配置文件
cat > ca-csr.json <<EOF2
{
"CN": "kubernetes",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "GuangDong",
"ST": "GuangZhou",
"O": "Kubernetes",
"OU": "System"
}
],
"ca": {
"expiry": "876000h"
}
}
EOF2
## 生成ca证书和ca的私钥
cfssl gencert -initca ca-csr.json | cfssljson -bare ssl/ca
EOF
执行
bash -x gen_k8s_ca_cert.sh
## 在ssl目录下生成
├── ca-key.pem
├── ca.pem
部署apiserver#
生成apiserver所需证书#
生成gen_apiserver_cert.sh
$ cat <<'EOF'> gen_apiserver_cert.sh
## 生成apiserver的证书和私钥(apiserver和其它k8s组件通信使用)
APISERVER_NAME=$1
cat > kube-apiserver-csr.json <<EOF1
{
"CN": "kube-apiserver",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "GuangDong",
"ST": "GuangZhou",
"O": "Kubernetes",
"OU": "System"
}
]
}
EOF1
cfssl gencert -ca=ssl/ca.pem -ca-key=ssl/ca-key.pem -config=ca-config.json \
-hostname=${APISERVER_NAME} \
-profile=peer kube-apiserver-csr.json | cfssljson -bare ssl/kube-apiserver
## apiserver聚合证书
## 访问kube-apiserver的另一种方式就是使用kube-proxy来代理访问, 而该证书就是用来支持SSL代理访问的. 在该种访问模
## 式下,我们是以http的方式发起请求到代理服务的, 此时, 代理服务会将该请求发送给kube-apiserver, 在此之前, 代理会
## 将发送给kube-apiserver的请求头里加入证书信息。
## 客户端 -- 发起请求 ---> 代理 -- Add Header信息:发起请求 --> kube-apiserver
## 如果apiserver所在的主机上没有运行kube-proxy,既无法通过服务的ClusterIP进行访问,需要
## --enable-aggregator-routing=true
## 生成ca签名请求文件
cat > front-proxy-ca-csr.json <<EOF2
{
"CN": "kubernetes",
"key": {
"algo": "rsa",
"size": 2048
},
"ca": {
"expiry": "876000h"
}
}
EOF2
## 此根证书用在requestheader-client-ca-file配置选项中, kube-apiserver使用该证书来验证客户端证书是否为自己所
## 签发
cfssl gencert -initca front-proxy-ca-csr.json | cfssljson -bare ssl/front-proxy-ca
## 生成front-proxy-client证书请求文件
## 这里的CN名称要和apiserver启动参数--requestheader-allowed-names=front-proxy-client相同
cat > front-proxy-client-csr.json <<EOF3
{
"CN": "front-proxy-client",
"key": {
"algo": "rsa",
"size": 2048
}
}
EOF3
## 生成代理层证书,代理端使用此证书,用来代用户向kube-apiserver认证
cfssl gencert -ca=ssl/front-proxy-ca.pem -ca-key=ssl/front-proxy-ca-key.pem -config=ca-config.json \
-profile=peer front-proxy-client-csr.json | cfssljson -bare ssl/front-proxy-client
## 创建ServiceAccount Key —— secret
## serviceaccount账号的一种认证方式,创建serviceaccount的时候会创建一个与之绑定的secret,这个secret会生成
## token,这组密钥对仅提供给controller-manager使用,controller-manager通过sa.key对token进行签名, master
## 节点通过公钥sa.pub进行签名的验证
openssl genrsa -out ssl/sa.key 2048
openssl rsa -in ssl/sa.key -pubout -out ssl/sa.pub
EOF
执行
## 10.96.0.1是server_cluseter_IP网段的第一个ip地址
bash -x gen_apiserver_cert.sh 127.0.0.1,kubernetes,kubernetes.default,kubernetes.default.svc,kubernetes.default.svc.cluster,kubernetes.default.svc.cluster.local,10.96.0.1,192.168.1.10,m01
生成配置文件及启动service文件#
生成脚本apiserver_config.sh
## --service-cluster-ip-range,该网段不能和宿主机的网段、pod网段重复
$ cat <<'EOF'> apiserver_config.sh
## 创建 kube-apiserver 启动参数配置文件
MASTER_ADDRESS=$1
ETCD_SERVERS=$2
ETCD_CERT_DIR=/opt/etcd/ssl
K8S_CERT_DIR=/opt/k8s/ssl
K8S_CONF_DIR=/opt/k8s/config
API_CERT_PRIFIX=kube-apiserver
cat > service/kube-apiserver.service.${MASTER_ADDRESS} <<EOF1
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes
After=network.target
[Service]
ExecStart=/usr/local/bin/kube-apiserver \\
--v=2 \\
--allow-privileged=true \\
--bind-address=${MASTER_ADDRESS} \\
--advertise-address=${MASTER_ADDRESS} \\
--secure-port=6443 \\
--service-cluster-ip-range=10.96.0.0/16 \
--service-node-port-range=30000-39999 \\
--etcd-servers=${ETCD_SERVERS} \\
--etcd-cafile=${ETCD_CERT_DIR}/etcd-ca.pem \\
--etcd-certfile=${ETCD_CERT_DIR}/etcd.pem \\
--etcd-keyfile=${ETCD_CERT_DIR}/etcd-key.pem \\
--client-ca-file=${K8S_CERT_DIR}/ca.pem \\
--tls-cert-file=${K8S_CERT_DIR}/${API_CERT_PRIFIX}.pem \\
--tls-private-key-file=${K8S_CERT_DIR}/${API_CERT_PRIFIX}-key.pem \\
--kubelet-client-certificate=${K8S_CERT_DIR}/${API_CERT_PRIFIX}.pem \\
--kubelet-client-key=${K8S_CERT_DIR}/${API_CERT_PRIFIX}-key.pem \\
--service-account-key-file=${K8S_CERT_DIR}/sa.pub \\
--service-account-signing-key-file=${K8S_CERT_DIR}/sa.key \\
--service-account-issuer=https://kubernetes.default.svc.cluster.local \\
--kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname \\
--enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,DefaultTolerationSeconds,NodeRestriction,ResourceQuota \\
--authorization-mode=Node,RBAC \\
--enable-bootstrap-token-auth=true \\
--enable-aggregator-routing=true \\
--proxy-client-cert-file=${K8S_CERT_DIR}/front-proxy-client.pem \\
--proxy-client-key-file=${K8S_CERT_DIR}/front-proxy-client-key.pem \\
--requestheader-client-ca-file=${K8S_CERT_DIR}/front-proxy-ca.pem \\
--requestheader-allowed-names=front-proxy-client \\
--requestheader-group-headers=X-Remote-Group \\
--requestheader-extra-headers-prefix=X-Remote-Extra- \\
--requestheader-username-headers=X-Remote-User
#--token-auth-file=\${K8S_CONF_DIR}/token.csv 这里禁用token文件进行认证
Restart=on-failure
RestartSec=10s
LimitNOFILE=65535
[Install]
WantedBy=multi-user.target
EOF1
EOF
执行
## bash apiserver_config.sh <master_IP> <etcd_cluster>
bash -x apiserver_config.sh 192.168.1.10 https://192.168.1.10:2379
## 在service目录下生成
├── kube-apiserver.service.192.168.1.10
分发二进制文件、证书及service文件#
$ for i in 192.168.1.10; do \
echo ">>> $i"; \
ssh $i "mkdir -p /opt/k8s/{ssl,config,log}"; \
scp bin/kube-apiserver $i:/usr/local/bin/; \
scp ssl/{kube*.pem,ca{,-key}.pem,front-proxy-client*.pem,front-proxy-ca.pem,sa.*} $i:/opt/k8s/ssl/; \
scp service/kube-apiserver.service.$i $i:/usr/lib/systemd/system/kube-apiserver.service; \
done
启动kube-apiserver服务#
for i in m01; do \
ssh $i "systemctl daemon-reload"; \
ssh $i "systemctl enable kube-apiserver"; \
ssh $i "systemctl restart kube-apiserver --no-block"; \
ssh $i "systemctl is-active kube-apiserver"; \
done
部署kubectl#
先部署kubectl
客户端工具,部署后可以使用命令kubectl
查看集群的信息
生成kubectl所需证书#
生成脚本gen_kubectl_cert.sh
$ cat <<EOF> gen_kubectl_cert.sh
## 生成kubectl的证书和私钥
## k8s安装时会创建一个集群角色(clusterrole),名字为cluster-admin,对集群具有最高管理权限同时会创建一个集群角色
## 绑定(clusterrolebingding),名字也叫做cluster-admin,这个绑定将集群角色(cluster-admin)和用户组
## (system:masters)关联起来,于是属于system:masters组内的用户,都会有这个集群角色赋予的权限;
## 生成证书时会定义用户clusteradmin,所属组为system:masters,所以clusteradmin拥有集群角色(cluster-admin)赋
## 予的权限。
cat > kubectl-csr.json <<EOF1
{
"CN": "clusteradmin",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "GuangZhou",
"O": "system:masters",
"OU": "Kubernetes-manual"
}
]
}
EOF1
cfssl gencert -ca=ssl/ca.pem -ca-key=ssl/ca-key.pem -config=ca-config.json -profile=peer kubectl-csr.json | cfssljson -bare ssl/kubectl
EOF
执行
bash -x gen_kubectl_cert.sh
## 在ssl目录先生成
├── kubectl-key.pem
├── kubectl.pem
生成kubeconfig文件#
生成脚本kubeconfig_kubectl_config.sh
## 参数根据自己部署需要进行修改
## USERNAME必须和证书申请的CN名字相同,这里的用户名是clusteradmin
$ cat <<'EOF' > kubeconfig_kubectl_config.sh
APISERVER_IP=$1
K8S_CERT_DIR=$2
PORT=6443
KUBE_APISERVER=https://${APISERVER_IP}:${PORT}
CLUSTER_NAME=kubernetes
USERNAME=clusteradmin
KUBECONFIG_FILE=kubeconfig/kubectl.kubeconfig
CONTEXT_NAME=${USERNAME}@${CLUSTER_NAME}
CERT_PRFIX=kubectl
## 设置集群参数
./bin/kubectl config set-cluster ${CLUSTER_NAME} \
--certificate-authority=${K8S_CERT_DIR}/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=${KUBECONFIG_FILE}
## 设置客户端认证参数
./bin/kubectl config set-credentials ${USERNAME} \
--client-certificate=${K8S_CERT_DIR}/${CERT_PRFIX}.pem \
--client-key=${K8S_CERT_DIR}/${CERT_PRFIX}-key.pem \
--embed-certs=true \
--kubeconfig=${KUBECONFIG_FILE}
## 设置context---将用户和集群关联起来
./bin/kubectl config set-context ${CONTEXT_NAME} \
--cluster=${CLUSTER_NAME} \
--user=${USERNAME} \
--kubeconfig=${KUBECONFIG_FILE}
## 设置默认contexts
./bin/kubectl config use-context ${CONTEXT_NAME} \
--kubeconfig=${KUBECONFIG_FILE}
EOF
执行
## example kubeconfig_kubectl_config.sh <API_SERVER> <CERTPATH>
bash -x kubeconfig_kubectl_config.sh 192.168.1.10 ssl
## 在kubeconfig目录下生成
├── kubectl.kubeconfig
分发kubeconfig文件#
## 分发kubeconfig证书
$ for i in m01; do \
echo ">>> $i"; \
ssh $i "mkdir -p $HOME/.kube/"; \
scp bin/kubectl $i:/usr/local/bin/; \
scp kubeconfig/kubectl.kubeconfig $i:$HOME/.kube/config; \
done
kubectl命令补全功能#
## bash配置
source <(kubectl completion bash)
echo "source <(kubectl completion bash)" >> ~/.bashrc
查看集群状态#
$ kubectl cluster-info
Kubernetes control plane is running at https://192.168.1.10:6443
To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.
$ kubectl get componentstatus
Warning: v1 ComponentStatus is deprecated in v1.19+
NAME STATUS MESSAGE ERROR
scheduler Unhealthy Get "https://127.0.0.1:10259/healthz": dial tcp 127.0.0.1:10259: connect: connection refused
controller-manager Unhealthy Get "https://127.0.0.1:10257/healthz": dial tcp 127.0.0.1:10257: connect: connection refused
etcd-0 Healthy {"health":"true","reason":""}
$ kubectl get all -A
NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
default service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 17m
部署controller-manager组件#
生成controller-manager所需证书#
创建生成证书脚本gen_controller_cert.sh
$ cat <<'EOF'> gen_controller_cert.sh
CONTROLLER_IP=$1
## 生成controller-manager证书签名请求
cat > kube-controller-manager-csr.json <<EOF1
{
"CN": "system:kube-controller-manager",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "GuangZhou",
"O": "system:kube-controller-manager",
"OU": "Kubernetes-manual"
}
]
}
EOF1
cfssl gencert -ca=ssl/ca.pem -ca-key=ssl/ca-key.pem \
-config=ca-config.json \
-hostname=${CONTROLLER_IP} \
-profile=peer kube-controller-manager-csr.json | cfssljson -bare ssl/kube-controller-manager
EOF
执行
bash -x gen_controller_cert.sh 127.0.0.1,192.168.1.10
## 在ssl目录下生成
├── kube-controller-manager-key.pem
├── kube-controller-manager.pem
生成kubeconfig文件#
$ cat <<'EOF'> kubeconfig_kube-controller-manager.sh
APISERVER_IP=$1
K8S_CERT_DIR=$2
PORT=6443
KUBE_APISERVER=https://${APISERVER_IP}:${PORT}
KUBECONFIG_FILE=kubeconfig/kube-controller-manager.kubeconfig
CLUSTER_NAME=kubernetes
USERNAME=system:kube-controller-manager
CONTEXT_NAME=${USERNAME}@${CLUSTER_NAME}
CERT_PRFIX=kube-controller-manager
## 设置集群参数
./bin/kubectl config set-cluster ${CLUSTER_NAME} \
--certificate-authority=${K8S_CERT_DIR}/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=${KUBECONFIG_FILE}
## 设置用户认证参数
./bin/kubectl config set-credentials ${USERNAME} \
--client-certificate=${K8S_CERT_DIR}/${CERT_PRFIX}.pem \
--client-key=${K8S_CERT_DIR}/${CERT_PRFIX}-key.pem \
--embed-certs=true \
--kubeconfig=${KUBECONFIG_FILE}
## 设置context---将用户和集群关联起来
./bin/kubectl config set-context ${CONTEXT_NAME} \
--cluster=${CLUSTER_NAME} \
--user=${USERNAME} \
--kubeconfig=${KUBECONFIG_FILE}
## 设置默认context
./bin/kubectl config use-context ${CONTEXT_NAME} \
--kubeconfig=${KUBECONFIG_FILE}
EOF
执行
## example:./kube-controller-manager_config.sh <MASTER_IPADDR> <证书目录>
bash -x kubeconfig_kube-controller-manager.sh 192.168.1.10 ssl
## 在kubeconfig目录下生成
├── kube-controller-manager.kubeconfig
生成kube-controller-manager的service文件#
生成脚本controller_manager_config.sh
## --cluster-cidr为pod网段,不能和宿主机网段,service网段重复
$ cat <<'EOF'> kube-controller-manager.sh
K8S_CERT_DIR=/opt/k8s/ssl
K8S_CONF_DIR=/opt/k8s/config
PODCIDR=172.16.0.0/16
cat > service/kube-controller-manager.service <<EOF1
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes
After=network.target
[Service]
ExecStart=/usr/local/bin/kube-controller-manager \\
--v=2 \\
--bind-address=127.0.0.1 \\
--root-ca-file=${K8S_CERT_DIR}/ca.pem \\
--cluster-signing-cert-file=${K8S_CERT_DIR}/ca.pem \\
--cluster-signing-key-file=${K8S_CERT_DIR}/ca-key.pem \\
--service-account-private-key-file=${K8S_CERT_DIR}/sa.key \\
--tls-cert-file=${K8S_CERT_DIR}/kube-controller-manager.pem \\
--tls-private-key-file=${K8S_CERT_DIR}/kube-controller-manager-key.pem \\
--kubeconfig=${K8S_CONF_DIR}/kube-controller-manager.kubeconfig \\
--leader-elect=true \\
--use-service-account-credentials=true \\
--node-monitor-grace-period=40s \\
--node-monitor-period=5s \\
--pod-eviction-timeout=2m0s \\
--controllers=*,bootstrapsigner,tokencleaner \\
--allocate-node-cidrs=true \\
--cluster-cidr=${PODCIDR} \\
--requestheader-client-ca-file=${K8S_CERT_DIR}/front-proxy-ca.pem \\
--node-cidr-mask-size=24
Restart=always
RestartSec=10s
[Install]
WantedBy=multi-user.target
EOF1
EOF
执行
bash -x kube-controller-manager.sh
# 在service目录下生成以下文件
├── kube-controller-manager.service
分发二进制文件、证书、kubeconfig文件及service文件#
$ for i in m01; do \
echo ">>> $i"; \
ssh $i "mkdir -p /opt/k8s/{ssl,config}"; \
scp bin/kube-controller-manager $i:/usr/local/bin/;
scp ssl/kube-controller*.pem $i:/opt/k8s/ssl/; \
scp service/kube-controller-manager.service $i:/usr/lib/systemd/system/; \
scp kubeconfig/kube-controller-manager.kubeconfig $i:/opt/k8s/config/; \
done
启动kube-controller-manager服务#
$ for i in m01; do \
echo ">>> $i"; \
ssh $i "systemctl daemon-reload"; \
ssh $i "systemctl enable kube-controller-manager"; \
ssh $i "systemctl restart kube-controller-manager --no-block"; \
ssh $i "systemctl is-active kube-controller-manager"; \
done
验证#
$ ss -tlp | grep kube-controller
LISTEN 0 16384 127.0.0.1:10257 0.0.0.0:* users:(("kube-controller",pid=2864,fd=7))
$ kubectl get cs
Warning: v1 ComponentStatus is deprecated in v1.19+
NAME STATUS MESSAGE ERROR
scheduler Unhealthy Get "https://127.0.0.1:10259/healthz": dial tcp 127.0.0.1:10259: connect: connection refused
controller-manager Healthy ok
etcd-0 Healthy {"health":"true","reason":""}
部署kube-scheduler组件#
生成kube-scheduler所需证书#
生成脚本gen_schduler_cert.sh
$ cat <<'EOF'> gen_schduler_cert.sh
## 生成 kube-scheduler 的证书和私钥
SCHEDULER_IP=$1
CSR_NAME_PREFIX=kube-scheduler
cat > ${CSR_NAME_PREFIX}-csr.json <<EOF1
{
"CN": "system:kube-scheduler",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "GuangZhou",
"O": "system:kube-scheduler",
"OU": "Kubernetes-manual"
}
]
}
EOF1
cfssl gencert -ca=ssl/ca.pem -ca-key=ssl/ca-key.pem \
-config=ca-config.json \
-hostname=${SCHEDULER_IP} \
-profile=peer ${CSR_NAME_PREFIX}-csr.json | cfssljson -bare ssl/${CSR_NAME_PREFIX}
EOF
执行
bash -x gen_schduler_cert.sh 127.0.0.1,192.168.1.10
## 在ssl目录下生成
├── kube-scheduler-key.pem
├── kube-scheduler.pem
生成kubeconfig文件#
生成脚本kubeconfig_kube-scheduler.sh
$ cat <<'EOF' > kubeconfig_kube-scheduler.sh
APISERVER_IP=$1
K8S_CERT_DIR=$2
PORT=6443
KUBE_APISERVER=https://${APISERVER_IP}:${PORT}
KUBECONFIG_FILE=kubeconfig/kube-scheduler.kubeconfig
CLUSTER_NAME=kubernetes
USERNAME=system:kube-scheduler
CONTEXT_NAME=${USERNAME}@${CLUSTER_NAME}
CERT_PRFIX=kube-scheduler
## 设置集群参数
./bin/kubectl config set-cluster ${CLUSTER_NAME} \
--certificate-authority=${K8S_CERT_DIR}/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=${KUBECONFIG_FILE}
## 设置用户认证参数
./bin/kubectl config set-credentials ${USERNAME} \
--client-certificate=${K8S_CERT_DIR}/${CERT_PRFIX}.pem \
--client-key=${K8S_CERT_DIR}/${CERT_PRFIX}-key.pem \
--embed-certs=true \
--kubeconfig=${KUBECONFIG_FILE}
## 设置context---将用户和集群关联起来
./bin/kubectl config set-context ${CONTEXT_NAME} \
--cluster=${CLUSTER_NAME} \
--user=${USERNAME} \
--kubeconfig=${KUBECONFIG_FILE}
## 设置默认context
./bin/kubectl config use-context ${CONTEXT_NAME} \
--kubeconfig=${KUBECONFIG_FILE}
EOF
添加可执行权限并运行
bash -x kubeconfig_kube-scheduler.sh 192.168.1.10 ssl
# 在kubeconfig目录下生成
├── kube-scheduler.kubeconfig
生成kube-scheduler的service文件#
生成脚本kube-scheduler.sh
$ cat <<'EOF'> kube-scheduler.sh
K8S_CONF_DIR=/opt/k8s/config
cat > service/kube-scheduler.service <<EOF1
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes
After=network.target
[Service]
ExecStart=/usr/local/bin/kube-scheduler \\
--v=2 \\
--bind-address=127.0.0.1 \\
--leader-elect=true \\
--kubeconfig=${K8S_CONF_DIR}/kube-scheduler.kubeconfig
Restart=always
RestartSec=10s
[Install]
WantedBy=multi-user.target
EOF1
EOF
执行
bash -x kube-scheduler.sh
## 在service目录下生成
├── kube-scheduler.service
分发二进制文件、证书、kubeconfig文件及service文件#
$ for i in m01; do \
echo ">>> $i"; \
ssh $i "mkdir -p /opt/k8s/{ssl,config}"; \
scp bin/kube-scheduler $i:/usr/local/bin/ ;
scp ssl/kube-scheduler*.pem $i:/opt/k8s/ssl/; \
scp service/kube-scheduler.service $i:/usr/lib/systemd/system/; \
scp kubeconfig/kube-scheduler.kubeconfig $i:/opt/k8s/config/; \
done
启动kube-scheduler服务#
$ for i in m01; do \
echo ">>> $i"; \
ssh $i "systemctl daemon-reload"; \
ssh $i "systemctl enable kube-scheduler"; \
ssh $i "systemctl restart kube-scheduler --no-block"; \
ssh $i "systemctl is-active kube-scheduler"; \
done
验证集群#
$ kubectl get cs
Warning: v1 ComponentStatus is deprecated in v1.19+
NAME STATUS MESSAGE ERROR
scheduler Healthy ok
controller-manager Healthy ok
etcd-0 Healthy {"health":"true","reason":""}
至此master节点三大组件部署完毕
部署kubelet#
配置TLS Bootstrap#
为什么这个证书不是手动管理?因为k8s的master节点可能是固定的,创建好之后一直就是那几台,但worker节点可能变化比较多,如果添加,删除,故障维护时手动添加会比较麻烦,证书和主机名是有绑定的,而我们的主机名又是不一样的,所以需要有一种机制自动颁发证书请求。
每个节点的kubelet组件都要使用由apiserver使用的CA签发的有效证书才能与apiserver通讯;此时如果节点多起来,为每个节点单独签署证书将是一件非常繁琐的事情;TLS bootstrapping功能就是让kubelet先使用一个预定的低权限用户连接到apiserver,然后向apiserver申请证书,kubelet的证书由apiserver动态签署。
生成kubeconfig文件#
bootstrap.kubeconfig
文件是一个用来向apiserver申请证书的文件
生成脚本kubeconfig_bootstrap_config.sh
$ cat <<'EOF'> kubeconfig_bootstrap_config.sh
APISERVER_IP=$1
K8S_CERT_DIR=$2
K8S_CONF_DIR=/opt/k8s/config
PORT=6443
KUBE_APISERVER=https://${APISERVER_IP}:${PORT}
KUBECONFIG_FILE=kubeconfig/bootstrap.kubeconfig
CLUSTER_NAME=kubernetes
## 生成bootstrap的token
TOKEN_ID=$(openssl rand -hex 3)
TOKEN_SECRET=$(openssl rand -hex 8)
BOOTSTRAP_TOKEN=${TOKEN_ID}.${TOKEN_SECRET}
USERNAME=system:bootstrap:${TOKEN_ID}
CONTEXT_NAME=${USERNAME}@${CLUSTER_NAME}
## 创建bootstrap.kubeconfig
## 设置集群参数
./bin/kubectl config set-cluster ${CLUSTER_NAME} \
--certificate-authority=${K8S_CERT_DIR}/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=${KUBECONFIG_FILE}
## 设置客户端认证参数,kubelet 使用bootstrap token认证
./bin/kubectl config set-credentials ${USERNAME} \
--token=${BOOTSTRAP_TOKEN} \
--kubeconfig=${KUBECONFIG_FILE}
## 设置上下文参数
./bin/kubectl config set-context ${CONTEXT_NAME} \
--cluster=kubernetes \
--user=${USERNAME} \
--kubeconfig=${KUBECONFIG_FILE}
## 使用上下文参数生成 bootstrap.kubeconfig 文件
./bin/kubectl config use-context ${CONTEXT_NAME} --kubeconfig=${KUBECONFIG_FILE}
## 创建boostrap token secret
cat > config/bootstrap-token-secret.yaml <<EOF1
apiVersion: v1
kind: Secret
metadata:
name: bootstrap-token-${TOKEN_ID}
namespace: kube-system
type: bootstrap.kubernetes.io/token
stringData:
token-id: ${TOKEN_ID}
token-secret: ${TOKEN_SECRET}
usage-bootstrap-authentication: "true"
usage-bootstrap-signing: "true"
auth-extra-groups: system:bootstrappers:default-node-token,system:bootstrappers:worker,system:bootstrappers:ingress
EOF1
EOF
执行
bash -x kubeconfig_bootstrap_config.sh 192.168.1.10 ssl
## 在config目录下生成
├── bootstrap-token-secret.yaml
## 在kubeconfig目录下生成
├── bootstrap.kubeconfig
导入bootstrap-token-secret#
## 创建secret
$ kubectl apply -f config/bootstrap-token-secret.yaml
secret/bootstrap-token-a956ff created
查看bootstrap-token#
$ kubectl get secret -nkube-system
NAME TYPE DATA AGE
bootstrap-token-a956ff bootstrap.kubernetes.io/token 5 12s
生成kubelet配置文件#
生成脚本kubelet.sh
$ cat <<'EOF'> kubelet_config.sh
K8S_CONF_DIR=/opt/k8s/config
K8S_CERT_DIR=/opt/k8s/ssl
CLUSTER_DNS=10.96.0.10
## 生成kubelet参数文件
cat > config/kubelet.conf <<EOF1
KUBELET_OPTS="--v=4 \\
--container-runtime-endpoint=unix:///run/containerd/containerd.sock \\
--runtime-cgroups=/systemd/system.slice \\
--kubeconfig=${K8S_CONF_DIR}/kubelet.kubeconfig \\
--bootstrap-kubeconfig=${K8S_CONF_DIR}/bootstrap.kubeconfig \\
--config=${K8S_CONF_DIR}/kubelet.yaml \\
--cert-dir=${K8S_CERT_DIR} \\
--node-labels=node.kubernetes.io/node="
EOF1
## 生成kubelet配置yaml文件
cat > config/kubelet.yaml <<EOF2
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
address: 0.0.0.0
port: 10250
readOnlyPort: 10255
authentication:
anonymous:
enabled: false
webhook:
cacheTTL: 2m0s
enabled: true
x509:
clientCAFile: ${K8S_CERT_DIR}/ca.pem
authorization:
mode: Webhook
webhook:
cacheAuthorizedTTL: 5m0s
cacheUnauthorizedTTL: 30s
runtimeRequestTimeout: 15m
cgroupDriver: systemd
cgroupsPerQOS: true
clusterDNS:
- ${CLUSTER_DNS}
clusterDomain: cluster.local
EOF2
## 生成kubelet.service服务启动文件
cat > service/kubelet.service <<EOF3
[Unit]
Description=Kubernetes Kubelet
After=containerd.service
Requires=containerd.service
[Service]
ExecStartPre=-/bin/mkdir -p /sys/fs/cgroup/hugetlb/systemd/system.slice
ExecStartPre=-/bin/mkdir -p /sys/fs/cgroup/blkio/systemd/system.slice
ExecStartPre=-/bin/mkdir -p /sys/fs/cgroup/cpuset/systemd/system.slice
ExecStartPre=-/bin/mkdir -p /sys/fs/cgroup/devices/systemd/system.slice
ExecStartPre=-/bin/mkdir -p /sys/fs/cgroup/net_cls,net_prio/systemd/system.slice
ExecStartPre=-/bin/mkdir -p /sys/fs/cgroup/perf_event/systemd/system.slice
ExecStartPre=-/bin/mkdir -p /sys/fs/cgroup/cpu,cpuacct/systemd/system.slice
ExecStartPre=-/bin/mkdir -p /sys/fs/cgroup/freezer/systemd/system.slice
ExecStartPre=-/bin/mkdir -p /sys/fs/cgroup/memory/systemd/system.slice
ExecStartPre=-/bin/mkdir -p /sys/fs/cgroup/pids/systemd/system.slice
ExecStartPre=-/bin/mkdir -p /sys/fs/cgroup/systemd/systemd/system.slice
LimitNOFILE=655350
LimitNPROC=655350
LimitCORE=infinity
LimitMEMLOCK=infinity
## 在centos系统上需要配置CPUAccounting和MemoryAccounting
CPUAccounting=true
MemoryAccounting=true
EnvironmentFile=${K8S_CONF_DIR}/kubelet.conf
ExecStart=/usr/local/bin/kubelet \$KUBELET_OPTS
Restart=on-failure
KillMode=process
[Install]
WantedBy=multi-user.target
EOF3
EOF
执行
bash -x kubelet_config.sh
## 在service目录下
├── kubelet.service
## 在config目录下
├── kubelet.conf
├── kubelet.yaml
分发二进制文件、配置文件、证书、kuconfig文件及service文件#
$ for i in m01; do \
echo ">>> $i"; \
ssh $i "mkdir -p /opt/k8s/{config,ssl,manifests}"; \
scp bin/kubelet $i:/usr/local/bin/; \
scp config/kubelet.{conf,yaml} $i:/opt/k8s/config/; \
scp kubeconfig/bootstrap.kubeconfig $i:/opt/k8s/config/; \
scp ssl/ca.pem $i:/opt/k8s/ssl; \
scp service/kubelet.service $i:/usr/lib/systemd/system/; \
done
启动kubelet服务#
$ for i in m01; do \
echo ">>> $i"; \
ssh $i "systemctl daemon-reload"; \
ssh $i "systemctl enable kubelet"; \
ssh $i "systemctl restart kubelet --no-block"; \
ssh $i "systemctl is-active kubelet"; \
done
授权#
使用systemctl status kubelet
会发现kubelet启动失败,进一步使用journalctl -xe -u kubelet.service --no-pager | less
会发现如下错误,提示User "system:bootstrap:<tokenid>"
不能创建资源certificatesigningrequests
m01 kubelet[1452]: Error: failed to run Kubelet: cannot create certificate signing request: certificatesigningrequests.certificates.k8s.io is forbidden: User "system:bootstrap:a956ff" cannot create resource "certificatesigningrequests" in API group "certificates.k8s.io" at the cluster scope
在默认情况下,使用Bootstrap Token进行引导时,Kubelet组件使用Token发起的请求其用户名为system:bootstrap:<tokenid>
,所属组为system:bootstrappers
,然后创建CSR请求,但是此用户没有任何权限;在k8s中已经创建了一个clusterrole(system:node-bootstrapper),此集群角色具有发起CSR请求的权限,我们需要创建一个clusterrolebinding将clusterrole和此token的用户名或者所属组进行关联,然后system:bootstrap:<tokenid>
拥有了system:node-bootstrapper
的权限,这样任何用户拿着这个token连接apiserver都具有system:node-bootstrapper
的权限
这里创建一个clusterrolebinding(名称:create-csrs-for-bootstrapping)将clusterrole和group进行绑定
kubectl create clusterrolebinding create-csrs-for-bootstrapping \
--clusterrole=system:node-bootstrapper \
--group=system:bootstrappers:default-node-token
$ kubectl get clusterrolebinding create-csrs-for-bootstrapping
NAME ROLE AGE
create-csrs-for-bootstrapping ClusterRole/system:node-bootstrapper 22s
手动签发kubelet证书并查看集群#
任何人使用token进行认证通过后进入授权阶段,api-server从该token中获取namespace和name信息,并将该token特殊对待,授予anyone bootstrap权利,将该匿名用户划分到system:bootstraps组,至此anyone使用该token认证的时候都具有了system:node-bootstrapper的权利
## 重新启动kubelet服务
systemctl restart kubelet.service
for i in m01; do \
echo ">>> $i"; \
ssh $i "systemctl daemon-reload"; \
ssh $i "systemctl enable kubelet"; \
ssh $i "systemctl restart kubelet --no-block"; \
ssh $i "systemctl is-active kubelet"; \
done
## 查看节点kubelet启动证书请求状态,这时已经是Pending状态
$ kubectl get csr
NAME AGE SIGNERNAME REQUESTOR REQUESTEDDURATION CONDITION
node-csr-swEhM80wF2MM02rWKEdzKL0KYaqb2y8QK0WXKja3RK0 9s kubernetes.io/kube-apiserver-client-kubelet system:bootstrap:a956ff <none> Pending
## 手动签发kubelet的证书
$ kubectl certificate approve node-csr-swEhM80wF2MM02rWKEdzKL0KYaqb2y8QK0WXKja3RK0
certificatesigningrequest.certificates.k8s.io/node-csr-swEhM80wF2MM02rWKEdzKL0KYaqb2y8QK0WXKja3RK0 approved
## 再次查看证书请求状态,已经变成了Approved,Issued
$ kubectl get csr
NAME AGE SIGNERNAME REQUESTOR REQUESTEDDURATION CONDITION
node-csr-swEhM80wF2MM02rWKEdzKL0KYaqb2y8QK0WXKja3RK0 70s kubernetes.io/kube-apiserver-client-kubelet system:bootstrap:a956ff <none> Approved,Issued
## 查看node,由于网络插件还未安装,状态显示为NotReady
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
m01 NotReady <none> 48s v1.26.1
自动批准,自动续期,自动颁发#
要是有很多worker节点要安装kubelet,手工去approve证书请求会很繁琐,增加工作量,就有了自动批准,自动续期,自动颁发的方法。
kubelet所发起的CSR请求是由controller manager签署的;如果想要是实现自动续期,就需要让controller manager能够在 kubelet发起证书请求的时候自动帮助其签署证书;那么controller manager不可能对所有的CSR证书申请都自动签署,这时候就需要配置RBAC规则,保证controller manager只对kubelet发起的特定CSR请求自动批准即可;在TLS bootstrapping官方文档中,CSR有三种请求类型:
- nodeclient: kubelet以O=system:nodes和CN=system:node:(node name)形式发起的CSR请求
- selfnodeclient: kubelet client renew自己的证书发起的CSR请求(与上一个证书就有相同的O和CN)
- selfnodeserver: kubelet server renew 自己的证书发起的CSR请求
通俗点讲就是:
nodeclient
类型的CSR仅在第一次启动时会产生,
selfnodeclient
类型的CSR请求实际上就是kubelet renew自己作为client跟 apiserver通讯时使用的证书产生的,selfnodeserver
类型的CSR请求则是kubelet首次申请或后续renew自己的10250 api端口证书时产生的,以下为3中CSR请求分别创建3种对应的Clusterrole
创建3个clusterrolebinding#
- 自动批准kubelet首次用于与 apiserver 通讯证书的 CSR 请求(nodeclient)
- 自动批准kubelet首次用于10250端口鉴权的CSR请求(实际上这个请求走的也是selfnodeserver 类型 CSR)
- 自动批准kubelet后续renew用于与apiserver通讯证书的 CSR 请求(selfnodeclient)
- 自动批准kubelet后续renew用于10250端口鉴权的 CSR 请求(selfnodeserver)
## 自动批准kubelet的首次CSR请求(用于与apiserver通讯的证书)
kubectl create clusterrolebinding node-client-auto-approve-csr --clusterrole=system:certificates.k8s.io:certificatesigningrequests:nodeclient --group=system:bootstrappers
## 自动批准kubelet后续renew用于与apiserver通讯证书的CSR请求
kubectl create clusterrolebinding node-client-auto-renew-crt --clusterrole=system:certificates.k8s.io:certificatesigningrequests:selfnodeclient --group=system:nodes
## 自动批准kubelet发起的用于10250端口鉴权证书的CSR请求(包括后续 renew)
kubectl create clusterrolebinding node-server-auto-renew-crt --clusterrole=system:certificates.k8s.io:certificatesigningrequests:selfnodeserver --group=system:nodes
分发二进制文件、配置文件、证书、kuconfig文件及service文件#
## 分发到其他主机
$ for i in w01 w02; do \
echo ">>> $i"; \
ssh $i "mkdir -p /opt/k8s/{config,ssl,manifests}"; \
scp bin/kubelet $i:/usr/local/bin/; \
scp config/kubelet.{conf,yaml} $i:/opt/k8s/config/; \
scp kubeconfig/bootstrap.kubeconfig $i:/opt/k8s/config/; \
scp ssl/ca.pem $i:/opt/k8s/ssl; \
scp service/kubelet.service $i:/usr/lib/systemd/system/; \
done
启动kubelet服务#
$ for i in w01 w02; do \
echo ">>> $i"; \
ssh $i "systemctl daemon-reload"; \
ssh $i "systemctl enable kubelet"; \
ssh $i "systemctl restart kubelet --no-block"; \
ssh $i "systemctl is-active kubelet"; \
done
查看csr和集群信息#
## 再次查看csr,其他主机已经自动申请证书并自动批准,颁发
$ kubectl get csr
NAME AGE SIGNERNAME REQUESTOR REQUESTEDDURATION CONDITION
node-csr-MWQKyY1rzUIX4dhLZZNeBza2PVAlBg_NAkNoY7LSqCs 1s kubernetes.io/kube-apiserver-client-kubelet system:bootstrap:a956ff <none> Approved,Issued
node-csr-pHNMpmBFv2q34Z8S82yifT2BrKjFA1dVFs3Wk2-wiKI 3s kubernetes.io/kube-apiserver-client-kubelet system:bootstrap:a956ff <none> Approved,Issued
node-csr-swEhM80wF2MM02rWKEdzKL0KYaqb2y8QK0WXKja3RK0 2m8s kubernetes.io/kube-apiserver-client-kubelet system:bootstrap:a956ff <none> Approved,Issued
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
m01 NotReady <none> 6m38s v1.26.1
w01 NotReady <none> 112s v1.26.1
w02 NotReady <none> 110s v1.26.1
## 修改node的role标签
kubectl label nodes m01 node-role.kubernetes.io/master=
kubectl label nodes w01 node-role.kubernetes.io/worker=
kubectl label nodes w02 node-role.kubernetes.io/worker=
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
m01 NotReady master 7m16s v1.26.1
w01 NotReady worker 2m30s v1.26.1
w02 NotReady worker 2m28s v1.26.1
部署kube-proxy#
kube-proxy运行在所有worker节点上,它监听apiserver中service和endpoint的变化情况,创建路由规则提供服务IP和负载均衡功能。
生成证书#
kube-proxy提取证书中的CN
作为客户端的用户名,即system:kube-proxy
。 kube-apiserver预定义的 RBAC使用的ClusterRoleBindings system:node-proxier
将用户system:kube-proxy
与ClusterRole system:node-proxier
绑定,该Role授予节点调用kube-apiserver proxy相关api的权限;
$ kubectl get clusterrole | grep node-proxier
system:node-proxier 2023-02-10T05:53:48Z
$ kubectl describe clusterrolebinding/system:node-proxier
Name: system:node-proxier
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:
Kind: ClusterRole
Name: system:node-proxier
Subjects:
Kind Name Namespace
---- ---- ---------
User system:kube-proxy
生成脚本gen_kube_proxy_cert.sh
$ cat <<EOF> gen_kube_proxy_cert.sh
## 生成 kube-proxy 的证书和私钥,
cat > kube-proxy-csr.json <<EOF1
{
"CN": "system:kube-proxy",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "GuangZhou",
"O": "system:kube-proxy",
"OU": "Kubernetes-manual"
}
]
}
EOF1
cfssl gencert -ca=ssl/ca.pem -ca-key=ssl/ca-key.pem -config=ca-config.json -profile=peer kube-proxy-csr.json | cfssljson -bare ssl/kube-proxy
EOF
执行
bash -x gen_kube_proxy_cert.sh
## 在ssl目录下生成
├── kube-proxy-key.pem
├── kube-proxy.pem
生成kubeconfig文件#
认证方式有2种
- 证书认证
- token认证
本次部署采用的是证书认证
生成脚本kube-proxy_kubeconfig.sh
$ cat <<'EOF'> kube-proxy_kubeconfig.sh
K8S_CONF_DIR=/opt/k8s/config
APISERVER_IP=$1
K8S_CERT_DIR=$2
PORT=6443
CLUSTER_NAME=kubernetes
KUBE_APISERVER=https://${APISERVER_IP}:${PORT}
KUBECONFIG_FILE=kubeconfig/kube-proxy.kubeconfig
USERNAME=system:kube-proxy
CONTEXT_NAME=${USERNAME}@${CLUSTER_NAME}
CERT_PRFIX=kube-proxy
./bin/kubectl config set-cluster ${CLUSTER_NAME} \
--certificate-authority=${K8S_CERT_DIR}/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=${KUBECONFIG_FILE}
./bin/kubectl config set-credentials ${USERNAME} \
--client-certificate=${K8S_CERT_DIR}/${CERT_PRFIX}.pem \
--client-key=${K8S_CERT_DIR}/${CERT_PRFIX}-key.pem \
--embed-certs=true \
--kubeconfig=${KUBECONFIG_FILE}
./bin/kubectl config set-context ${CONTEXT_NAME} \
--cluster=${CLUSTER_NAME} \
--user=${USERNAME} \
--kubeconfig=${KUBECONFIG_FILE}
./bin/kubectl config use-context ${CONTEXT_NAME} \
--kubeconfig=${KUBECONFIG_FILE}
EOF
执行
bash -x kube-proxy_kubeconfig.sh 192.168.1.10 ssl
## 在kueconfig目录下生成
├── kube-proxy.kubeconfig
生成配置文件和service文件#
生成脚本kube-proxy_config.sh
## clusterCIDR: 172.16.0.0/16 这个是pod网段
$ cat <<'EOF'> kube-proxy_config.sh
K8S_CONF_DIR=/opt/k8s/config
CLUSER_CIDR=172.16.0.0/16
## 创建 kube-proxy 启动参数配置文件
cat > config/kube-proxy.yaml <<EOF1
apiVersion: kubeproxy.config.k8s.io/v1alpha1
bindAddress: 0.0.0.0
clientConnection:
acceptContentTypes: ""
burst: 10
contentType: application/vnd.kubernetes.protobuf
kubeconfig: ${K8S_CONF_DIR}/kube-proxy.kubeconfig
qps: 5
clusterCIDR: ${CLUSER_CIDR}
configSyncPeriod: 15m0s
conntrack:
max: null
maxPerCore: 32768
min: 131072
tcpCloseWaitTimeout: 1h0m0s
tcpEstablishedTimeout: 24h0m0s
enableProfiling: false
healthzBindAddress: 0.0.0.0:10256
hostnameOverride: ""
iptables:
masqueradeAll: false
masqueradeBit: 14
minSyncPeriod: 0s
syncPeriod: 30s
ipvs:
masqueradeAll: true
minSyncPeriod: 5s
scheduler: "rr"
syncPeriod: 30s
kind: KubeProxyConfiguration
metricsBindAddress: 127.0.0.1:10249
mode: "ipvs"
nodePortAddresses: null
oomScoreAdj: -999
portRange: ""
udpIdleTimeout: 250ms
EOF1
##-----------------------------------
## 创建 kube-proxy.service 服务管理文件
cat > service/kube-proxy.service <<EOF2
[Unit]
Description=Kubernetes Proxy
After=network.target
[Service]
ExecStart=/usr/local/bin/kube-proxy \\
--config=${K8S_CONF_DIR}/kube-proxy.yaml \\
--v=2
Restart=always
RestartSec=10s
[Install]
WantedBy=multi-user.target
EOF2
EOF
执行
bash -x kube-proxy_config.sh
## 在config目录下生成
├── kube-proxy.yaml
## 在service目录下生成
├── kube-proxy.service
分发二进制文件、配置文件、kubeconfig文件及service文件#
$ for i in m01 w01 w02; do \
echo ">>> $i"; \
scp bin/kube-proxy $i:/usr/local/bin/; \
scp config/kube-proxy.yaml $i:/opt/k8s/config/; \
scp kubeconfig/kube-proxy.kubeconfig $i:/opt/k8s/config/; \
scp service/kube-proxy.service $i:/usr/lib/systemd/system/; \
scp ssl/front-proxy-ca.pem $i:/opt/k8s/ssl/; \
done
启动kube-proxy服务#
$ for i in m01 w01 w02; do \
echo ">>> $i"; \
ssh $i "systemctl daemon-reload"; \
ssh $i "systemctl enable kube-proxy"; \
ssh $i "systemctl restart kube-proxy --no-block"; \
ssh $i "systemctl is-active kube-proxy"; \
done
查看服务状态#
$ ss -tnlp | grep kube-proxy
LISTEN 0 16384 127.0.0.1:10249 0.0.0.0:* users:(("kube-proxy",pid=2272,fd=14))
LISTEN 0 16384 *:10256 *:* users:(("kube-proxy",pid=2272,fd=12))
$ ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 10.96.0.1:443 rr
-> 192.168.2.10:6443 Masq 1 0 0
部署Flannel#
下载最新版,传送门
## 创建配置目录
mkdir -p /root/addons/flannel
cd /root/addons/flannel
## 下载yaml文件
wget https://github.com/flannel-io/flannel/releases/latest/download/kube-flannel.yml \
-O flannel.yaml
vim flannel.yaml
## cni-conf.json:flannel提供给kubelet使用的,kubelet根据这个配置调用flannel cni。
## net-conf.json:给DeamonSet的主容器的flanneld使用的,配置要和k8s的podcidr一致
## 修改pod cidr,Backend使用默认的vxlan
net-conf.json: |
{
# "Network": "10.244.0.0/16",
"Network": "172.16.0.0/16",
"Backend": {
"Type": "vxlan",
# "VNI": 4000, ## 可选,默认是1
# "Port": 4789, ## 可选,默认8472
"DirectRouting": true ## 建议使用,在同一个二层网络直接走路由,跨网段才走vxlan隧道
}
## 修改pod cidr,Backend使用IPIP的配置
net-conf.json: |
{
# "Network": "10.244.0.0/16",
"Network": "172.16.0.0/16",
"Backend": {
"Type": "ipip",
"DirectRouting": true ## 建议使用
}
kubectl apply -f flannel.yaml
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
m01 Ready master 3d14h v1.26.1
w01 Ready worker 3d14h v1.26.1
w02 Ready worker 3d14h v1.26.1
$ kubectl get pods -A
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-flannel kube-flannel-ds-mxj56 1/1 Running 0 2m4s
kube-flannel kube-flannel-ds-tnrkc 1/1 Running 0 2m4s
kube-flannel kube-flannel-ds-xsq28 1/1 Running 0 2m4s
$ ip -d add show flannel.1
5: flannel.1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UNKNOWN group default
link/ether f6:69:ba:e9:d9:6b brd ff:ff:ff:ff:ff:ff promiscuity 0 minmtu 68 maxmtu 65535
vxlan id 1 local 192.168.1.10 dev ens32 srcport 0 0 dstport 8472 nolearning ttl auto ageing 300 udpcsum noudp6zerocsumtx noudp6zerocsumrx numtxqueues 1 numrxqueues 1 gso_max_size 65536 gso_max_segs 65535
inet 172.16.0.0/32 scope global flannel.1
valid_lft forever preferred_lft forever
inet6 fe80::f469:baff:fee9:d96b/64 scope link
valid_lft forever preferred_lft forever
## 运行正常后,fanneld会在node主机的/etc/cni/net.d下生成配置文件,之后kubelet将会调用它
$ cat /etc/cni/net.d/10-flannel.conflist
{
"name": "cbr0",
"cniVersion": "0.3.1",
"plugins": [
{
"type": "flannel",
"delegate": {
"hairpinMode": true,
"isDefaultGateway": true
}
},
{
"type": "portmap",
"capabilities": {
"portMappings": true
}
}
]
}
部署addons#
部署coredns#
用于集群内部service的解析,可以让pod把service name解析成service ip,然后通过service的ip地址进行连接到对应的应用
,打开传送门,查看coredns的最新版本,目前最新是1.10.0
版本。
部署coredns后,每个pod启动后,会在resolv.conf之注入dns信息
$ cat /etc/resolv.conf
search default.svc.cluster.local svc.cluster.local cluster.local
nameserver 10.96.0.10
options ndots:5
生成yaml资源文件#
创建脚本文件gen_coredns_config.sh
cat <<'EOF'> gen_coredns_config.sh
DNS_DOMAIN=cluster.local
IMAGE_REGISTRY=registry.cn-hangzhou.aliyuncs.com/ik8ss/coredns:v1.10.0
DNS_MEMORY_LIMIT=170Mi
DNS_SERVER_IP=10.96.0.10
cat > coredns.yaml <<EOF1
apiVersion: v1
kind: ServiceAccount
metadata:
name: coredns
namespace: kube-system
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
kubernetes.io/bootstrapping: rbac-defaults
addonmanager.kubernetes.io/mode: Reconcile
name: system:coredns
rules:
- apiGroups:
- ""
resources:
- endpoints
- services
- pods
- namespaces
verbs:
- list
- watch
- apiGroups:
- ""
resources:
- nodes
verbs:
- get
- apiGroups:
- discovery.k8s.io
resources:
- endpointslices
verbs:
- list
- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"
labels:
kubernetes.io/bootstrapping: rbac-defaults
addonmanager.kubernetes.io/mode: EnsureExists
name: system:coredns
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:coredns
subjects:
- kind: ServiceAccount
name: coredns
namespace: kube-system
---
apiVersion: v1
kind: ConfigMap
metadata:
name: coredns
namespace: kube-system
labels:
addonmanager.kubernetes.io/mode: EnsureExists
data:
Corefile: |
.:53 {
errors
health {
lameduck 5s
}
ready
kubernetes ${DNS_DOMAIN} in-addr.arpa ip6.arpa {
pods insecure
fallthrough in-addr.arpa ip6.arpa
ttl 30
}
prometheus :9153
forward . /etc/resolv.conf {
max_concurrent 1000
}
cache 30
loop
reload
loadbalance
}
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: coredns
namespace: kube-system
labels:
k8s-app: kube-dns
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/name: "CoreDNS"
spec:
# replicas: not specified here:
# 1. In order to make Addon Manager do not reconcile this replicas parameter.
# 2. Default is 1.
# 3. Will be tuned in real time if DNS horizontal auto-scaling is turned on.
strategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
selector:
matchLabels:
k8s-app: kube-dns
template:
metadata:
labels:
k8s-app: kube-dns
spec:
securityContext:
seccompProfile:
type: RuntimeDefault
priorityClassName: system-cluster-critical
serviceAccountName: coredns
affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: k8s-app
operator: In
values: ["kube-dns"]
topologyKey: kubernetes.io/hostname
tolerations:
- key: "CriticalAddonsOnly"
operator: "Exists"
nodeSelector:
kubernetes.io/os: linux
containers:
- name: coredns
image: ${IMAGE_REGISTRY}
imagePullPolicy: IfNotPresent
resources:
limits:
memory: ${DNS_MEMORY_LIMIT}
requests:
cpu: 100m
memory: 70Mi
args: [ "-conf", "/etc/coredns/Corefile" ]
volumeMounts:
- name: config-volume
mountPath: /etc/coredns
readOnly: true
ports:
- containerPort: 53
name: dns
protocol: UDP
- containerPort: 53
name: dns-tcp
protocol: TCP
- containerPort: 9153
name: metrics
protocol: TCP
livenessProbe:
httpGet:
path: /health
port: 8080
scheme: HTTP
initialDelaySeconds: 60
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 5
readinessProbe:
httpGet:
path: /ready
port: 8181
scheme: HTTP
securityContext:
allowPrivilegeEscalation: false
capabilities:
add:
- NET_BIND_SERVICE
drop:
- all
readOnlyRootFilesystem: true
dnsPolicy: Default
volumes:
- name: config-volume
configMap:
name: coredns
items:
- key: Corefile
path: Corefile
---
apiVersion: v1
kind: Service
metadata:
name: kube-dns
namespace: kube-system
annotations:
prometheus.io/port: "9153"
prometheus.io/scrape: "true"
labels:
k8s-app: kube-dns
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/name: "CoreDNS"
spec:
selector:
k8s-app: kube-dns
clusterIP: ${DNS_SERVER_IP}
ports:
- name: dns
port: 53
protocol: UDP
- name: dns-tcp
port: 53
protocol: TCP
- name: metrics
port: 9153
protocol: TCP
EOF1
EOF
执行脚本
bash -x gen_coredns_config.sh
# 当前目录下生成以下文件
├── coredns.yaml
应用yaml资源文件并查看#
kubectl apply -f coredns.yaml
$ kubectl get pod -A
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system coredns-7f8b8f7b8-rhnnj 1/1 Running 0 20s
部署metrics-server#
在k8s中系统资源的采集均使用Metrics-server,可以通过Metrics采集节点和pod的内存,磁盘,CPU和网络使用率。
可以传送门下载yaml文件,但是要修改几个参数
IMAGE_REGISTRY
:在阿里云的容器服务里面查看对应metrics-server镜像的版本
生成yaml资源文件#
创建脚本文件gen_metrics-server_config.sh
$ cat <<'EOF'> gen_metrics-server_config.sh
CERT_PATH=/opt/k8s/ssl
CLIENT_CA_FILE=${CERT_PATH}/front-proxy-ca.pem
IMAGE_REGISTRY=registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-server:v0.6.2
cat > metrics-server.yaml <<EOF1
apiVersion: v1
kind: ServiceAccount
metadata:
labels:
k8s-app: metrics-server
name: metrics-server
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
k8s-app: metrics-server
rbac.authorization.k8s.io/aggregate-to-admin: "true"
rbac.authorization.k8s.io/aggregate-to-edit: "true"
rbac.authorization.k8s.io/aggregate-to-view: "true"
name: system:aggregated-metrics-reader
rules:
- apiGroups:
- metrics.k8s.io
resources:
- pods
- nodes
verbs:
- get
- list
- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
k8s-app: metrics-server
name: system:metrics-server
rules:
- apiGroups:
- ""
resources:
- nodes/metrics
verbs:
- get
- apiGroups:
- ""
resources:
- pods
- nodes
verbs:
- get
- list
- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
labels:
k8s-app: metrics-server
name: metrics-server-auth-reader
namespace: kube-system
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccount
name: metrics-server
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
labels:
k8s-app: metrics-server
name: metrics-server:system:auth-delegator
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:auth-delegator
subjects:
- kind: ServiceAccount
name: metrics-server
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
labels:
k8s-app: metrics-server
name: system:metrics-server
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:metrics-server
subjects:
- kind: ServiceAccount
name: metrics-server
namespace: kube-system
---
apiVersion: v1
kind: Service
metadata:
labels:
k8s-app: metrics-server
name: metrics-server
namespace: kube-system
spec:
ports:
- name: https
port: 443
protocol: TCP
targetPort: https
selector:
k8s-app: metrics-server
---
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
k8s-app: metrics-server
name: metrics-server
namespace: kube-system
spec:
selector:
matchLabels:
k8s-app: metrics-server
strategy:
rollingUpdate:
maxUnavailable: 0
template:
metadata:
labels:
k8s-app: metrics-server
spec:
containers:
- args:
- --cert-dir=/tmp
- --secure-port=4443
- --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
- --kubelet-use-node-status-port
- --metric-resolution=15s
- --kubelet-insecure-tls ## kubectl top nodes
- --requestheader-client-ca-file=${CLIENT_CA_FILE} ## 聚合CA证书 front-proxy-ca.crt
- --requestheader-username-headers=X-Remote-User
- --requestheader-group-headers=X-Remote-Group
- --requestheader-extra-headers-prefix=X-Remote-Extra-
image: ${IMAGE_REGISTRY}
imagePullPolicy: IfNotPresent
livenessProbe:
failureThreshold: 3
httpGet:
path: /livez
port: https
scheme: HTTPS
periodSeconds: 10
name: metrics-server
ports:
- containerPort: 4443
name: https
protocol: TCP
readinessProbe:
failureThreshold: 3
httpGet:
path: /readyz
port: https
scheme: HTTPS
initialDelaySeconds: 20
periodSeconds: 10
resources:
requests:
cpu: 100m
memory: 200Mi
securityContext:
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
runAsNonRoot: true
runAsUser: 1000
volumeMounts:
- mountPath: /tmp
name: tmp-dir
- name: ca-ssl
mountPath: ${CERT_PATH}
nodeSelector:
kubernetes.io/os: linux
priorityClassName: system-cluster-critical
serviceAccountName: metrics-server
hostNetwork: true # kubectl top pods
volumes:
- emptyDir: {}
name: tmp-dir
- name: ca-ssl
hostPath:
path: ${CERT_PATH}
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:
labels:
k8s-app: metrics-server
name: v1beta1.metrics.k8s.io
spec:
group: metrics.k8s.io
groupPriorityMinimum: 100
insecureSkipTLSVerify: true
service:
name: metrics-server
namespace: kube-system
version: v1beta1
versionPriority: 100
EOF1
EOF
执行脚本
bash -x gen_metrics-server_config.sh
# 在当前目录下生成
└── metrics-server.yaml
应用yaml资源文件并查看#
kubectl apply -f metrics-server.yaml
$ kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
metrics-server-84668c4755-8d4gg 1/1 Running 0 76s
查看资源消耗#
$ kubectl top nodes
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
m01 179m 8% 1244Mi 15%
w01 78m 3% 601Mi 72%
w02 63m 3% 584Mi 70%
$ kubectl top pods -A
NAMESPACE NAME CPU(cores) MEMORY(bytes)
kube-flannel kube-flannel-ds-gz6w4 10m 24Mi
kube-flannel kube-flannel-ds-kxgtw 12m 22Mi
kube-flannel kube-flannel-ds-qctql 11m 15Mi
kube-system coredns-b47bf9f44-5pgxg 3m 20Mi
kube-system metrics-server-84668c4755-8d4gg 3m 16Mi
部署dashboard#
查看dashbord的最新版本,传送门
安装#
创建脚本文件gen_dashboard_config.sh
$ cat <<'EOF'> gen_dashboard_config.sh
CLIENT_CA_FILE=${CERT_PATH}/front-proxy-ca.pem
IMAGE_DASHBOARD=registry.cn-hangzhou.aliyuncs.com/ik8ss/dashboard:v2.7.0
IMAGE_METRICS=registry.cn-hangzhou.aliyuncs.com/ik8ss/metrics-scraper:v1.0.8
cat > dashboard.yaml <<EOF1
apiVersion: v1
kind: Namespace
metadata:
name: kubernetes-dashboard
---
apiVersion: v1
kind: ServiceAccount
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
namespace: kubernetes-dashboard
---
kind: Service
apiVersion: v1
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
namespace: kubernetes-dashboard
spec:
ports:
- port: 443
targetPort: 8443
nodePort: 30000
selector:
k8s-app: kubernetes-dashboard
type: NodePort
---
apiVersion: v1
kind: Secret
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard-certs
namespace: kubernetes-dashboard
type: Opaque
---
apiVersion: v1
kind: Secret
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard-csrf
namespace: kubernetes-dashboard
type: Opaque
data:
csrf: ""
---
apiVersion: v1
kind: Secret
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard-key-holder
namespace: kubernetes-dashboard
type: Opaque
---
kind: ConfigMap
apiVersion: v1
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard-settings
namespace: kubernetes-dashboard
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
namespace: kubernetes-dashboard
rules:
# Allow Dashboard to get, update and delete Dashboard exclusive secrets.
- apiGroups: [""]
resources: ["secrets"]
resourceNames: ["kubernetes-dashboard-key-holder", "kubernetes-dashboard-certs", "kubernetes-dashboard-csrf"]
verbs: ["get", "update", "delete"]
# Allow Dashboard to get and update 'kubernetes-dashboard-settings' config map.
- apiGroups: [""]
resources: ["configmaps"]
resourceNames: ["kubernetes-dashboard-settings"]
verbs: ["get", "update"]
# Allow Dashboard to get metrics.
- apiGroups: [""]
resources: ["services"]
resourceNames: ["heapster", "dashboard-metrics-scraper"]
verbs: ["proxy"]
- apiGroups: [""]
resources: ["services/proxy"]
resourceNames: ["heapster", "http:heapster:", "https:heapster:", "dashboard-metrics-scraper", "http:dashboard-metrics-scraper"]
verbs: ["get"]
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
rules:
# Allow Metrics Scraper to get metrics from the Metrics server
- apiGroups: ["metrics.k8s.io"]
resources: ["pods", "nodes"]
verbs: ["get", "list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
namespace: kubernetes-dashboard
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: kubernetes-dashboard
subjects:
- kind: ServiceAccount
name: kubernetes-dashboard
namespace: kubernetes-dashboard
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: kubernetes-dashboard
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: kubernetes-dashboard
subjects:
- kind: ServiceAccount
name: kubernetes-dashboard
namespace: kubernetes-dashboard
---
kind: Deployment
apiVersion: apps/v1
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
namespace: kubernetes-dashboard
spec:
replicas: 1
revisionHistoryLimit: 10
selector:
matchLabels:
k8s-app: kubernetes-dashboard
template:
metadata:
labels:
k8s-app: kubernetes-dashboard
spec:
securityContext:
seccompProfile:
type: RuntimeDefault
containers:
- name: kubernetes-dashboard
image: ${IMAGE_DASHBOARD}
imagePullPolicy: Always
ports:
- containerPort: 8443
protocol: TCP
args:
- --auto-generate-certificates
- --namespace=kubernetes-dashboard
# Uncomment the following line to manually specify Kubernetes API server Host
# If not specified, Dashboard will attempt to auto discover the API server and connect
# to it. Uncomment only if the default does not work.
# - --apiserver-host=http://my-address:port
volumeMounts:
- name: kubernetes-dashboard-certs
mountPath: /certs
# Create on-disk volume to store exec logs
- mountPath: /tmp
name: tmp-volume
livenessProbe:
httpGet:
scheme: HTTPS
path: /
port: 8443
initialDelaySeconds: 30
timeoutSeconds: 30
securityContext:
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
runAsUser: 1001
runAsGroup: 2001
volumes:
- name: kubernetes-dashboard-certs
secret:
secretName: kubernetes-dashboard-certs
- name: tmp-volume
emptyDir: {}
serviceAccountName: kubernetes-dashboard
nodeSelector:
"kubernetes.io/os": linux
# Comment the following tolerations if Dashboard must not be deployed on master
tolerations:
- key: node-role.kubernetes.io/master
effect: NoSchedule
---
kind: Service
apiVersion: v1
metadata:
labels:
k8s-app: dashboard-metrics-scraper
name: dashboard-metrics-scraper
namespace: kubernetes-dashboard
spec:
ports:
- port: 8000
targetPort: 8000
selector:
k8s-app: dashboard-metrics-scraper
---
kind: Deployment
apiVersion: apps/v1
metadata:
labels:
k8s-app: dashboard-metrics-scraper
name: dashboard-metrics-scraper
namespace: kubernetes-dashboard
spec:
replicas: 1
revisionHistoryLimit: 10
selector:
matchLabels:
k8s-app: dashboard-metrics-scraper
template:
metadata:
labels:
k8s-app: dashboard-metrics-scraper
spec:
securityContext:
seccompProfile:
type: RuntimeDefault
containers:
- name: dashboard-metrics-scraper
image: ${IMAGE_METRICS}
ports:
- containerPort: 8000
protocol: TCP
livenessProbe:
httpGet:
scheme: HTTP
path: /
port: 8000
initialDelaySeconds: 30
timeoutSeconds: 30
volumeMounts:
- mountPath: /tmp
name: tmp-volume
securityContext:
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
runAsUser: 1001
runAsGroup: 2001
serviceAccountName: kubernetes-dashboard
nodeSelector:
"kubernetes.io/os": linux
# Comment the following tolerations if Dashboard must not be deployed on master
tolerations:
- key: node-role.kubernetes.io/master
effect: NoSchedule
volumes:
- name: tmp-volume
emptyDir: {}
EOF1
EOF
执行
bash -x gen_dashboard_config.sh
kubectl apply -f dashboard.yaml
$ kubectl get pod -A
kubernetes-dashboard dashboard-metrics-scraper-657cfb9584-zvpr5 1/1 Running 0 80s
kubernetes-dashboard kubernetes-dashboard-6d67fd849b-k8bj6 1/1 Running 0 80s
使用token访问#
## 创建ServiceAccount用户,用户名为dashboard-admin
kubectl create serviceaccount dashboard-admin -n kube-system
## 创建一个clusterrolebinding,名称为dashboard-admin,将用户dashboard-admin和cluster-admin角色绑定
kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin
## 查看用户dashboard-admin
$ kubectl describe secrets dashboard-admin -n kube-system
Name: dashboard-admin
Namespace: kube-system
Labels: <none>
Annotations: kubernetes.io/service-account.name: dashboard-admin
kubernetes.io/service-account.uid: fb9e55a7-3fbe-4637-beb3-b471f26d5e9c
Type: kubernetes.io/service-account-token
Data
====
ca.crt: 1342 bytes
namespace: 11 bytes
token: eyJhbGciOiJSUzI1NiIsImtpZCI6IjlQV2Y2eWZfOTd0b0xlN01YeTJRNERwcFV3dmFFVTZoNVRqX2tYWXo0SWcifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJkYXNoYm9hcmQtYWRtaW4iLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiZGFzaGJvYXJkLWFkbWluIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQudWlkIjoiZmI5ZTU1YTctM2ZiZS00NjM3LWJlYjMtYjQ3MWYyNmQ1ZTljIiwic3ViIjoic3lzdGVtOnNlcnZpY2VhY2NvdW50Omt1YmUtc3lzdGVtOmRhc2hib2FyZC1hZG1pbiJ9.XR7g6JIhF41LhyuRlpjVtEMYTAa-5citH0OX35Yh1FYLyAeTdBdHNwHjHUGcWaf2etq-yhfSSECmNEvgoFvWq9tGG685HqryEsqTDd1O6qQ867pNiCFJH-A919_m85b5_r5w82xOzDdXD98HXvbhW1Am_6eklpzvK7XrX4N_i0h-ClNPt3YxLHrFymwTwSdIGg6ik6mSWmHAi5-MxoawnR7HKEVEMM0z2HAcsU4FnrGcv1HX_7SAi55nE5lbbmHDX1aVEsYsfSilswNeh5hpwHoqbFYXblG0Th_aVMd_w_yibYwcPk1W-Q2Ydw2zLshLmPYSGicuqu2ytYbqBLAdHA
有了令牌就可以使用令牌登陆了
$ kubectl get pod -n kubernetes-dashboard -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
dashboard-metrics-scraper-657cfb9584-zvpr5 1/1 Running 0 92m 172.16.0.3 m01 <none> <none>
kubernetes-dashboard-6d67fd849b-k8bj6 1/1 Running 0 92m 172.16.2.2 w02 <none> <none>
使用kubeconfig登陆#
cd /root/k8s
$ cat <<'EOF' > kubeconfig_dashboard.sh
DASHBOARD_TOKEN=eyJhbGciOiJSUzI1NiIsImtpZCI6IjlQV2Y2eWZfOTd0b0xlN01YeTJRNERwcFV3dmFFVTZoNVRqX2tYWXo0SWcifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJkYXNoYm9hcmQtYWRtaW4iLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiZGFzaGJvYXJkLWFkbWluIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQudWlkIjoiZmI5ZTU1YTctM2ZiZS00NjM3LWJlYjMtYjQ3MWYyNmQ1ZTljIiwic3ViIjoic3lzdGVtOnNlcnZpY2VhY2NvdW50Omt1YmUtc3lzdGVtOmRhc2hib2FyZC1hZG1pbiJ9.XR7g6JIhF41LhyuRlpjVtEMYTAa-5citH0OX35Yh1FYLyAeTdBdHNwHjHUGcWaf2etq-yhfSSECmNEvgoFvWq9tGG685HqryEsqTDd1O6qQ867pNiCFJH-A919_m85b5_r5w82xOzDdXD98HXvbhW1Am_6eklpzvK7XrX4N_i0h-ClNPt3YxLHrFymwTwSdIGg6ik6mSWmHAi5-MxoawnR7HKEVEMM0z2HAcsU4FnrGcv1HX_7SAi55nE5lbbmHDX1aVEsYsfSilswNeh5hpwHoqbFYXblG0Th_aVMd_w_yibYwcPk1W-Q2Ydw2zLshLmPYSGicuqu2ytYbqBLAdHA
APISERVER_IP=$1
K8S_CERT_DIR=$2
PORT=6443
KUBE_APISERVER=https://${APISERVER_IP}:${PORT}
KUBECONFIG_FILE=kubeconfig/dashboard-admin.kubeconfig
CLUSTER_NAME=kubernetes
USERNAME=kube-system:dashboard-admin
CONTEXT_NAME=${USERNAME}@${CLUSTER_NAME}
# 设置集群参数
./bin/kubectl config set-cluster ${CLUSTER_NAME} \
--certificate-authority=${K8S_CERT_DIR}/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=${KUBECONFIG_FILE}
# 设置用户认证参数
./bin/kubectl config set-credentials ${USERNAME} \
--token=${DASHBOARD_TOKEN} \
--kubeconfig=${KUBECONFIG_FILE}
# 设置context---将用户和集群关联起来
./bin/kubectl config set-context ${CONTEXT_NAME} \
--cluster=${CLUSTER_NAME} \
--user=${USERNAME} \
--kubeconfig=${KUBECONFIG_FILE}
# 设置默认context
./bin/kubectl config use-context ${CONTEXT_NAME} \
--kubeconfig=${KUBECONFIG_FILE}
EOF
bash -x kubeconfig_dashboard.sh 192.168.1.10 ssl
# 在kueconfig目录下生成
├── dashboard-admin.kubeconfig
## 下载dashboard-admin.kubeconfig,web登陆是选kubeconfig文件验证
集群验证#
集群可用需要通过以下测试项
- pod必须能解析相同namespace下service
- pod必须能解析跨不同namespace的service
- 每个节点必须要能访问k8s的kubernetes的service端口443和kube-dns的service端口53
- pod与pod之间通通信
- 相同namespace内的pod之间能通信
- 跨不同namespace的pod之前能通信
- 跨不同worker节点的pod之间能通信
创建测试pod#
mkdir -p /root/yaml
cd /root/yaml
$ cat <<EOF> busybox.yaml
apiVersion: apps/v1
kind: Deployment ## 创建一个deployment对象
metadata:
name: deployment-busybox
namespace: default
spec:
replicas: 4 ## 1个pod副本
selector:
matchLabels:
app: busybox
template:
metadata:
labels:
app: busybox
spec:
containers:
- image: busybox:1.28
name: busybox-container
imagePullPolicy: IfNotPresent
command: ["/bin/sh","-ce","sleep 3600"]
restartPolicy: Always
EOF
$ kubectl apply -f busybox.yaml
deployment.apps/deployment-busybox created
$ kubectl get pod -o wide
kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
deployment-busybox-7bb56cfc66-65rpj 1/1 Running 0 7m8s 172.16.1.4 w01 <none> <none>
deployment-busybox-7bb56cfc66-7gt85 1/1 Running 0 7m8s 172.16.2.6 w02 <none> <none>
deployment-busybox-7bb56cfc66-9xkq8 1/1 Running 0 43m 172.16.0.5 m01 <none> <none>
deployment-busybox-7bb56cfc66-w4mft 1/1 Running 0 15m 172.16.2.5 w02 <none> <none>
pod必须能解析相同namespace下service#
## 集群安装完毕后,default名称空间下自动创建了一个service,名称为kubernetes
$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 10d
$ kubectl exec pod/deployment-busybox-7bb56cfc66-9xkq8 -- nslookup kubernetes
error: unable to upgrade connection: Forbidden (user=kube-apiserver, verb=create, resource=nodes, subresource=proxy)
## 提示user kube-apiserver被禁止,apiserver访问kubelet也需要授权,创建一个集群角色绑定--apiserver-kubelet
$ kubectl create clusterrolebinding kube-apiserver --clusterrole=system:kubelet-api-admin --user=kube-apiserver
## 再次查询,可以正常解析
$ kubectl exec deployment-busybox-7bb56cfc66-9xkq8 -- nslookup kubernetes
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local
Name: kubernetes
Address 1: 10.96.0.1 kubernetes.default.svc.cluster.local
跨不同namespace的service#
## busybox在default下,kube-dns在kube-system下,可以正常解析
$ kubectl exec deployment-busybox-7bb56cfc66-9xkq8 -n default -- nslookup kube-dns.kube-system
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local
Name: kube-dns.kube-system
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local
每个节点必须要能访问k8s的kubernetes svc 443和kube-dns的 service的53#
## 用telnet命令测试k8s service的443端口和kube-dns的53端口。
$ telnet 10.96.0.1 443
Trying 10.96.0.1...
Connected to 10.96.0.1.
Escape character is '^]'.
$ telnet 10.96.0.10 53
Trying 10.96.0.10...
Connected to 10.96.0.10.
Escape character is '^]'.
Connection closed by foreign host.
# 2个service的端口可以telnet
pod与pod之间通通信#
$ kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
deployment-busybox-7bb56cfc66-65rpj 1/1 Running 0 7m8s 172.16.1.4 w01 <none> <none>
deployment-busybox-7bb56cfc66-7gt85 1/1 Running 0 7m8s 172.16.2.6 w02 <none> <none>
deployment-busybox-7bb56cfc66-9xkq8 1/1 Running 0 43m 172.16.0.5 m01 <none> <none>
deployment-busybox-7bb56cfc66-w4mft 1/1 Running 0 15m 172.16.2.5 w02 <none> <none>
## 相同namespace,相同worker节点之间的通信
$ kubectl exec deployment-busybox-7bb56cfc66-7gt85 -- ping -c 2 172.16.1.4
PING 172.16.1.4 (172.16.1.4): 56 data bytes
64 bytes from 172.16.1.4: seq=0 ttl=62 time=1.908 ms
64 bytes from 172.16.1.4: seq=1 ttl=62 time=2.495 ms
## 相同namespace,不同worker节点之间的通信
$ kubectl exec deployment-busybox-7bb56cfc66-7gt85 -- ping -c 2 172.16.0.5
PING 172.16.0.5 (172.16.0.5): 56 data bytes
64 bytes from 172.16.0.5: seq=0 ttl=62 time=2.739 ms
64 bytes from 172.16.0.5: seq=1 ttl=62 time=2.156 ms
## 不同namespace之间的通信
$ kubectl get pod -n kube-system -owide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
coredns-556b886bc4-24b8s 1/1 Running 0 82m 172.16.0.2 m01 <none> <none>
$ kubectl exec deployment-busybox-7bb56cfc66-7gt85 -- ping -c 2 172.16.0.2
PING 172.16.0.2 (172.16.0.2): 56 data bytes
64 bytes from 172.16.0.2: seq=0 ttl=62 time=2.924 ms
64 bytes from 172.16.0.2: seq=1 ttl=62 time=3.008 ms
至此一个学习用的k8s集群搭建完毕。
部署一个应用#
$ kubectl create deployment nginx-dpm --image=nginx:1.14-alpine
deployment.apps/nginx created
$ kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
nginx-dpm-658767d5f-b4278 1/1 Running 0 4m2s 172.16.0.6 m01 <none> <none>
$ kubectl expose deployment nginx-dpm --port=80 --type=NodePort
service/nginx exposed
$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/nginx-dpm NodePort 10.96.73.96 <none> 80:37988/TCP 15s
$ curl http://192.168.1.10:37988
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>
<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>
<p><em>Thank you for using nginx.</em></p>
</body>
</html>
## 查看pod的ip网段和所在主机,pod被调度在m01主机上
$ kubectl get pod nginx-dpm-658767d5f-b4278 -owide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
nginx-dpm-658767d5f-b4278 1/1 Running 0 7m28s 172.16.0.6 m01 <none> <none>
## 查看m01的PodCIDR也是在172.16.0.0/24,说明pod的IP从这个cidr进行分配
$ kubectl describe nodes m01
....
PodCIDR: 172.16.0.0/24
PodCIDRs: 172.16.0.0/24
....
$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.1.1 0.0.0.0 UG 100 0 0 ens32
172.16.0.0 0.0.0.0 255.255.255.0 U 0 0 0 cni0
172.16.1.0 192.168.1.11 255.255.255.0 UG 0 0 0 ens32
172.16.2.0 172.16.2.0 255.255.255.0 UG 0 0 0 flannel.1
192.168.1.0 0.0.0.0 255.255.255.0 U 100 0 0 ens32
$ kubectl exec nginx-dpm-658767d5f-b4278 -- ip a
error: unable to upgrade connection: Forbidden (user=kube-apiserver, verb=create, resource=nodes, subresource=proxy)
## 提示user kube-apiserver被禁止
kubectl create clusterrolebinding apiserver-kubelet --clusterrole=system:kubelet-api-admin --user=kube-apiserver
$ kubectl exec nginx-dpm-658767d5f-b4278 -- ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN qlen 1000
link/ipip 0.0.0.0 brd 0.0.0.0
3: eth0@if11: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc noqueue state UP
link/ether 46:6b:9a:cb:f7:50 brd ff:ff:ff:ff:ff:ff
inet 172.16.0.6/24 brd 172.16.0.255 scope global eth0
valid_lft forever preferred_lft forever
inet6 fe80::446b:9aff:fecb:f750/64 scope link
valid_lft forever preferred_lft forever
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术