1. 决策树python源码实现--多叉分类树
多叉分类树
下面实现的分类树只限于特征是离散变量,而连续变量不能处理。另外,西瓜书介绍的缺失值的处理、多变量处理均未实现。下面实现的树有一个共同的特点,它的分支依据都是一个具体的特征取值,且每次特征选择之后都要删除特征。
一、python实现
我使用python的类实现多分叉决策树,包括决策树的训练和预测两部分。
1.1树的结构
使用python的字典(dict)作为树的结点,字典的嵌套形成树,格式如下
{'#':feature_name,'feature_value':{}} #树的结点
#特征名字为0,取值为0的分支
{'#': 0, 0: 0, 1: {'#': 1, 0: 0, 1: 1}} #例子
1.2 种树
1.2.1 种树流程
建树的过程就是迭代选择划分的特征,每一次迭代选择一个特征进行划分。决策树的训练一般遵循以下两个步骤:
- 特征选择
- 进入下一次递归(给子集进行特征选择)
其中,迭代返回的情况有
- 类别值都一样,返回该类别
- 特征值都一样,返回类别频数最大的哪一类
1.2.2 特征选择指标
特征选择就是选择“纯度”(混乱程度越低)最大的特征。前面提到,信息增益、信息增益率、基尼指数都可以用于特征选择。接下来根据它们的公式,可以依次写出相应的函数,用于选择纯度最大的特征。
-
权值
下面的公式中的\(p_k\)(概率)或者\(\frac{|D^v|}{|D|}\)(权值)都可以用这个公式计算。其中注意的是两个参数都是数组类型。
def cal_weight(y,w=None):
'''计算离散变量的权值\概率
:param y: 数组,arr
:param w: 样本权值,arr
:return:
'''
unique_val = set(y) #用数组还是字典存储结果?用生成器
if w is None:
m = len(y)
for v in unique_val:
yield v,sum(v==y)/m #用生成器返回结果:取值,权值\概率
else:
sum_ = sum(w)
for v in unique_val:
yield v,sum(w[y==v])/sum_ #用生成器返回结果:取值,权值\概率
yield None,0 #y为空的情况
-
信息熵
这里的信息熵不直接作为特征选择指标,而是作为信息增益的一部分
# 计算信息熵
def Ent(y,w): #计算信息熵只需要用到数据集D中的因变量y
'''
:param y:因变量y,shpae =(m);arr类型
:param w: 样本权值,arr
:return:
'''
ent = 0
for v,p in cal_weight(y,w):
ent -= p*np.log2(p)
return ent
- 信息增益(ID3)
def Gain(x_i,y,ent,w):
'''
:param x_i:第i个特征(属性),1*m
:param w: 样本权值,arr
:return:
'''
gain = ent #信息增益
for v,p in cal_weight(x_i,w):
index = x_i == v #取值为v的索引
w_ = w if w is None else w[index]
gain -= p**Ent(y[index],w_)
return gain
- 信息增益率(C4.5)
#第i个特征的信息增益率
def Gain_Radio(x_i,y,ent,w ):
'''
:param x_i:第i个特征(属性),1*m
:return:
'''
gain = ent #信息增益
iv = 1e-9 #固有值,平滑处理
for v,p in cal_weight(x_i,w):
index = x_i == v # 取值为v的索引
w_ = w if w is None else w[index]
gain -= p**Ent(y[index],w_)
iv -=p*np.log2(p)
return gain/iv
-
Gini(基尼值)
基尼值也不直接作为特征选择指标,而是作为基尼指数的一部分
#第i个特征的基尼值
def Gini(y,w):
p_2 = 0
for v,p in cal_weight(y,w):
p_2 += p**2
return 1- p_2
- 基尼指数
#第i个特征的基尼指数
def Gini_index(x_i,y,w):
gini_index = 0
for v,p in cal_weight(x_i,w):
index = x_i == v # 取值为v的索引
w_ = w if w is None else w[index]
gini_index += p**Gini(y[index],w_)
return gini_index
1.2.3 生成树(种树)
下面是决策树的整体结构。接下来解释构造函数三个参数的作用:
- criterion:选择特征选择方法
- splitter:选择是否随机特征选择
- weight:样本权重
其中splitter、weight有何作用?答案是用来种森林。
若splitter选择'random',可以用来写ExtraTree(极度随机森林)
若指定weight,可以用来写AdaBoost(...森林)
#多叉分类树
class ClassifyTree_:
def __init__(self,criterion="gini",splitter='best',weight=None):
self.criterion = criterion
self.weight = weight
self.splitter = splitter
#----------特征选择方法-----------------
def id3(self,X,y,weight): #criterion="id3",splitter='best'
def c45(self,X,y,weight): #criterion="C45",splitter='best'
def gini(self,X,y,weight): #criterion="gini",splitter='best'
def rand_(self,X,y,weight): #splitter='random'
#----------种树-------------------------
def build_(self,X,y,feat_lst,criterion,weight=None): #这里需要传入特征列表,因为X改变了
def fit(self, X, y,weight=None):
# 四种不同的树
self.weight = weight
if self.splitter == 'best':
if self.criterion == 'id3':
self.tree = self.build_(X, y, list(range(X.shape[1])), self.id3, weight)
elif self.criterion == 'c45':
self.tree = self.build_(X, y, list(range(X.shape[1])), self.c45, weight)
elif self.criterion == 'gini':
self.tree = self.build_(X, y, list(range(X.shape[1])), self.cart, weight)
else:
raise ('gini/c45/id3')
else:
self.tree = self.build_(X, y, list(range(X.shape[1])), self.rand_, weight)
return self
#----------预测-------------------------
def predict(self, X):
1.3 例子
下面实现的分类树只限于特征是离散变量,而连续变量不能处理。另外,西瓜书介绍的缺失值的处理、多变量处理均未实现。阅读这些例子可以轻松理解上面的建树流程。注意,下面的例子都是简易版本的决策树,而非完整版。
1.3.1 ID3决策树
- 使用信息增益划分数据集
# 使用id3拿到最佳特征的索引
def id3(self,X,y,weight):
best_Index = -1
best_gain = -np.inf
ent = Ent(y,self.weight)
for i in range(X.shape[1]):
gain = Gain(X[:,i],y,ent,weight)
if gain > best_gain:
best_gain = gain
best_Index = i #信息增益最大的特征
return best_Index
这个建树函数需要注意的两个点:
为何要传入\(feat\_lst\)(各个特征的名字)? 因为每次划分后,特征会被删除掉。
注意2个步骤和3个退出条件
def build_(self,X,y,feat_lst,criterion,weight=None): #这里需要传入特征列表,因为X改变了
'''
:param X:
:param y:
:param feat_lst:特征名字的列表
:return:
'''
m,n = X.shape #样本,特征数量
# if m==0: return # 返回1:没有样本了,退出;;会出现这种情况吗?
if len(set(y)) == 1:return y[0] #返回2:类别值都一样
# 1.特征选择
if n == 1:
node = {'#': feat_lst[0]} # 结点,存储特征的索引
x = X[:, 0]
for val in set(x): # 该特征所有的取值
node[val] = cal_mode(x[x==val]) #取众数
else:
best_Index = criterion(X, y, weight)
splitVal = set(X[:,best_Index]) #该特征所有的取值
if len(splitVal)==1 :return cal_mode(y) #返回3:特征值都一样,返回频数最大的类别
else:
node = {'#':feat_lst[best_Index] } #结点,存储特征的索引
index = list(range(n))
index.pop(best_Index) # 需要划分的特征index
feat_l=feat_lst[:] #避免影响,前面的
feat_l.pop(best_Index)
# 2.划分数据集,递归调用种子树
for val in splitVal:
i_sample = X[:, best_Index] == val #子数据集
weight_ = weight if weight is None else weight[i_sample]
node[val] = self.build_(X[i_sample][:, index], y[i_sample], feat_l,criterion,weight_)
return node
- 训练的函数入口
def fit(self, X, y,weight=None):
# 建树
self.weight = weight #保存样本权重
if self.splitter == 'best':
if self.criterion == 'id3':
# 这里用索引来代替特征的名字 list(range(X.shape[1])):索引
self.tree = self.build_(X, y, list(range(X.shape[1])), self.id3, weight)
- 预测函数
# 分不同数据类型进行调用;二维数组或者一个向量(样本)
def predict(self, X):
if len(X.shape) > 1: # 二维数组
rst = np.zeros(X.shape[0])#.astype(objecT),可以存放字符串
for i,x in enumerate(X):
rst[i] = self.predict_(x)
elif len(X) == 0:
rst = np.inf
else:
rst = self.predict_(X)
return rst
# 真正开始预测
def predict_(self,x):
tree = self.tree
while True:
if isinstance(tree,dict):
key = tree['#'] #树的名字
else:
return tree
try:
tree = tree[x[key]] #根据取值进入下一级
except:
return np.inf
ID3决策树使用选择信息增益最大的特征进行划分。稍微将特征选择的标准改变,可得C4.5决策树。在信息增益高于平均水平的特征中选择信息增益率最大的。同样地,将指标改成基尼指数,也可以得到...决策树。
二、测试
2.1 可跑性测试
一般而已,当你花费九牛二虎之力终于把一颗树的代码撸完之后,都会遭到跑不动沉痛打击。所以,我们先拿简单的数据集来测试。
def valid():
'''树能不能跑'''
dataSet = np.array([[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']])
X = dataSet[:,:-1]
y = dataSet[:, -1]
m = ClassifyTree_()
m.fit(X, y) #训练
print(m.predict(np.array(['1','1']))) #预测
return m.tree
if __name__ == '__main__':
a = valid()
print(a)
结果如下
三、完整代码
下面可以通过传入不同参数选择不同的树。
import numpy as np
from utils import cal_mode,Gini_index,Ent,Gain,Gain_Radio
#多叉分类树
class ClassifyTree_:
def __init__(self,criterion="gini",splitter='best',weight=None):
self.criterion = criterion
self.weight = weight
self.splitter = splitter
def id3(self,X,y,weight):
best_Index = -1
best_gain = -np.inf
ent = Ent(y,self.weight)
for i in range(X.shape[1]):
gain = Gain(X[:,i],y,ent,weight)
if gain > best_gain:
best_gain = gain
best_Index = i #信息增益最大的特征
return best_Index
def c45(self,X,y,weight): #这里需要传入特征列表,因为X改变了
'''建树'''
# 特征选择
n = X.shape[1]
gain_arr = np.zeros(n) # 增益
ent = Ent(y,self.weight)
for i in range(n): # 特征数量
gain_arr[i] = Gain(X[:, i], y, ent,weight)
m_gain = np.mean(gain_arr) # 平均增益
best_Index = -1
best_gain_radio = -np.inf
for i in range(n): # 对每个特征
if gain_arr[i] > m_gain:
gain_radio = Gain_Radio(X[:, i], y, ent,weight)
if gain_radio > best_gain_radio:
best_gain_radio = gain_radio
best_Index = i
return best_Index
def gini(self,X,y,weight):
'''建树'''
# 特征选择
best_Index = -1
best_gini_index = np.inf
for i in range(X.shape[1]):
gini_index = Gini_index(X[:, i], y,weight)
if gini_index < best_gini_index:
best_gini_index = gini_index
best_Index = i # 基尼指数最小的特征
return best_Index
def rand_(self,X,y,weight):
return np.random.choice(X.shape[1])
def build_(self,X,y,feat_lst,criterion,weight=None): #这里需要传入特征列表,因为X改变了
'''
:param X:
:param y:
:param feat_lst:特征名字的列表
:return:
'''
# 特征选择
m,n = X.shape #样本,特征数量
# if m==0: return # 没有样本了,退出;;;会出现这种情况吗
if len(set(y)) == 1:return y[0] #类别值都一样
if n == 1:
node = {'#': feat_lst[0]} # 结点,存储特征的索引
x = X[:, 0]
for val in set(x): # 该特征所有的取值
node[val] = cal_mode(x[x==val]) #取众数
else:
best_Index = criterion(X, y, weight)
splitVal = set(X[:,best_Index]) #该特征所有的取值
if len(splitVal)==1 :return cal_mode(y) #特征值都一样,返回频数最大的类别
else:
node = {'#':feat_lst[best_Index] } #结点,存储特征的索引
index = list(range(n))
index.pop(best_Index) # 需要划分的特征index
feat_l=feat_lst[:] #避免影响,前面的
feat_l.pop(best_Index)
for val in splitVal:
i_sample = X[:, best_Index] == val #子数据集
weight_ = weight if weight is None else weight[i_sample]
node[val] = self.build_(X[i_sample][:, index], y[i_sample], feat_l,criterion,weight_)
return node
def fit(self, X, y,weight=None):
# 建树
self.weight = weight
if self.splitter == 'best':
if self.criterion == 'id3':
self.tree = self.build_(X, y, list(range(X.shape[1])), self.id3, weight)
elif self.criterion == 'c45':
self.tree = self.build_(X, y, list(range(X.shape[1])), self.c45, weight)
elif self.criterion == 'gini':
self.tree = self.build_(X, y, list(range(X.shape[1])), self.gini, weight)
else:
raise ('gini/c45/id3')
else:
self.tree = self.build_(X, y, list(range(X.shape[1])), self.rand_, weight)
return self
# 分不同数据类型进行调用;二维数组或者一个向量(样本)
def predict(self, X):
if len(X.shape) > 1: # 二维数组
rst = np.zeros(X.shape[0])#.astype(objecT),可以存放字符串
for i,x in enumerate(X):
rst[i] = self.predict_(x)
elif len(X) == 0:
rst = np.inf
else:
rst = self.predict_(X)
return rst
# 真正开始预测
def predict_(self,x):
tree = self.tree
while True:
if isinstance(tree,dict):
key = tree['#'] #树的名字
else:
return tree
try:
tree = tree[x[key]] #根据取值进入下一级
except:
return np.inf
def valid():
'''树能不能跑'''
dataSet = np.array([[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']])
X = dataSet[:,:-1]
y = dataSet[:, -1]
m = ClassifyTree_()
m.fit(X, y) #训练
print('预测结果',m.predict(np.array(['1','1']))) #预测
return m.tree
if __name__ == '__main__':
a = valid()
print('训练出来的树:',a)