随笔- 59
文章- 0
评论- 17
阅读-
18万
09 2017 档案
机器学习六 Xgboost: 一把屠龙刀的自我修养
摘要:[TOC] 引言 集成学习, 在机器学习中是一个非常重要的思想: 把多个弱分类器精巧地组合在一起,成为一个很强大的学习器. 集成学习也因此一直处在风口浪边. 集成学习主要分为bagging 及boosting, 二者分别(主要)解决偏倚 方差分解中的方差与偏倚. 目前, 一般会认为boosting的
阅读全文
机器学习五 EM 算法
摘要:目录引言经典示例EM算法GMM 推导参考文献: 引言 Expectation maximization (EM) 算法是一种非常神奇而强大的算法. EM算法于 1977年 由Dempster 等总结提出. 说EM算法神奇而强大是因为它可以解决含有隐变量的概率模型问题. EM算法是一个简单而又复杂的算
阅读全文
机器学习四 SVM
摘要:[TOC] 引言 在深度神经网终(Deep Neural Network, DNN) 大热之前, 在机器学习里有个明星算法就是今天要与大家分享的 支持向量机(Support Vector Machine, SVM ). 它是昔日的明星, 虽然现在没有DNN风光, 但它依然是机器学习领域内耀眼的存在,
阅读全文
机器学习三 集成学习二: Boosting
摘要:集成学习二: Boosting 目录集成学习二: Boosting引言AdaboostAdaboost 算法前向分步算法前向分步算法Boosting Tree回归树提升回归树Gradient Boosting参考文献: 引言 集成学习,的第二种方式称为Boosting. 不同于bagging的民主投
阅读全文
机器学习二 集成学习一: Bagging
摘要:''团结就是力量'' 对问题进行建模时, 算法无论如何优化都无法达到我们的要求,又或者精准算法的实现或调优成本太大, 这时,我们就会想,能不能把几个算法或模型结合起来,以'集体'的力量来解决问题? 这就是集成学习产生的原因. 偏倚与方差 在俱体讲解集成学习之前,先介绍一个概念偏倚-方差. 衡量模型的
阅读全文
时间序列(六): 以NASA之名: 卡尔曼滤波器
摘要:以NASA之名: 卡尔曼滤波器 'That's one small step for man,one giant leap for mankind.' — Neil Alden Armstron 引言 二十世纪的阿波罗登月计划在人类历史上是浓墨重彩的一笔, 是人类科学发展极其重要的里程碑. 在此计划
阅读全文