• 标签:字符串处理、前缀判断

题目描述

将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。

示例 1:
在这里插入图片描述> 输入:l1 = [1,2,4], l2 = [1,3,4] 输出:[1,1,2,3,4,4]
示例 2:

输入:l1 = [], l2 = [] 输出:[]

示例 3:

输入:l1 = [], l2 = [0] 输出:[0] 提示:

两个链表的节点数目范围是 [0, 50]
-100 <= Node.val <= 100 l1 和 l2 均按 非递减顺序 排列

原题: LeetCode 21

思路及实现

方式一:迭代(推荐)

思路

我们可以用迭代的方法来实现上述算法。当 l1 和 l2 都不是空链表时,判断 l1 和 l2 哪一个链表的头节点的值更小,将较小值的节点添加到结果里,当一个节点被添加到结果里之后,将对应链表中的节点向后移一位

代码实现

Java版本
/**
 * Definition for singly-linked list.
 * class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int val) {
 *         this.val = val;
 *     }
 * }
 */
class Solution {
    public ListNode mergeTwoLists(ListNode list1, ListNode list2) {
        ListNode node = new ListNode(-1); // 创建一个临时节点作为结果链表的头节点
        ListNode cur = node;
        
        while (list1 != null && list2 != null) {
            if (list1.val < list2.val) {
                cur.next = list1; // 将较小节点连接到结果链表
                list1 = list1.next; // 移动指针到下一个节点
            } else {
                cur.next = list2;
                list2 = list2.next;
            }
            cur = cur.next; // 移动当前节点指针到下一个节点
        }
        
        if (list1 != null) {
            cur.next = list1; // 将剩下的节点连接到结果链表
        }
        
        if (list2 != null) {
            cur.next = list2;
        }
        
        return node.next; // 返回结果链表的头节点
    }
}

说明:
创建了一个临时节点作为结果链表的头节点。然后使用cur引用指向当前节点,通过遍历两个链表,比较节点的值,将较小节点连接到结果链表中,并将指针移向下一个节点。最后,将剩下的节点连接到结果链表的末尾。

需要注意的是,最后返回的是结果链表的头节点

C语言版本
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 */

struct ListNode* mergeTwoLists(struct ListNode* list1, struct ListNode* list2) {
    struct ListNode* node = (struct ListNode*)malloc(sizeof(struct ListNode));
    node->val = -1; // 创建一个临时节点作为结果链表的头节点
    node->next = NULL;
    struct ListNode* cur = node;
    
    while (list1 != NULL && list2 != NULL) {
        if (list1->val < list2->val) {
            cur->next = list1; // 将较小节点连接到结果链表
            list1 = list1->next; // 移动指针到下一个节点
        } else {
            cur->next = list2;
            list2 = list2->next;
        }
        cur = cur->next; // 移动当前节点指针到下一个节点
    }
    
    if (list1 != NULL) {
        cur->next = list1; // 将剩下的节点连接到结果链表
    }
    
    if (list2 != NULL) {
        cur->next = list2;
    }
    
    struct ListNode* result = node->next; // 指向结果链表的头节点
    free(node); // 释放临时节点的内存
    return result;
}

说明: 在C语言中使用了头节点,并使用了指针操作来完成。

在算法中,我们创建了一个临时节点作为结果链表的头节点。然后使用cur指针指向当前节点,通过遍历两个链表,比较节点的值,将较小节点连接到结果链表中,并将指针移向下一个节点。最后,将剩下的节点连接到结果链表的末尾。

需要注意的是,最后返回的是结果链表的头节点,使用一个临时节点来保存结果链表的头节点可以简化操作。

在末尾,我们释放了临时节点的内存,以防止内存泄漏。

Python3版本
# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, val=0, next=None):
#         self.val = val
#         self.next = next

class Solution:
    def mergeTwoLists(self, list1: ListNode, list2: ListNode) -> ListNode:
        node = ListNode(-1)  # 创建临时节点作为结果链表的头节点
        cur = node
        
        while list1 and list2:
            if list1.val < list2.val:
                cur.next = list1  # 将较小节点连接到结果链表
                list1 = list1.next
            else:
                cur.next = list2
                list2 = list2.next
            cur = cur.next
        
        cur.next = list1 or list2  # 将剩下的节点连接到结果链表
        
        return node.next  # 返回结果链表的头节点

说明: Python 三元表达式写法 A if x else B ,代表当 x=True 时执行 A ,否则执行 B 。

复杂度分析

  • 时间复杂度:O(M+N),M, N分别标识list1和list2的长度
  • 空间复杂度: O(1), 节点引用cur,常量级的额外空间

方式二:递归(不推荐)

思路

我们可以如下递归地定义两个链表里的 merge 操作(忽略边界情况,比如空链表等):

情况一   :list1[0]<list2[0],则 list1[0]+merge(list1[1:],list2) 
其他情况 :list2[0]+merge(list1,list2[1:])  

也就是说,两个链表头部值较小的一个节点与剩下元素的 merge 操作结果合并。

我们直接将以上递归过程建模,同时需要考虑边界情况。
如果 l1 或者 l2 一开始就是空链表 ,那么没有任何操作需要合并,所以我们只需要返回非空链表。否则,我们要判断 l1 和 l2 哪一个链表的头节点的值更小,然后递归地决定下一个添加到结果里的节点。如果两个链表有一个为空,递归结束

代码实现

Java版本
/**
 * Definition for singly-linked list.
 * public class ListNode {
 * int val;
 * ListNode next;
 * ListNode() {}
 * ListNode(int val) { this.val = val; }
 * ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
        // 如果l1为空,则直接返回l2作为合并后的链表
        if (l1 == null) {
            return l2;
        }
        // 如果l2为空,则直接返回l1作为合并后的链表
        else if (l2 == null) {
            return l1;
        }
        // 如果l1的值小于l2的值
        else if (l1.val < l2.val) {
            // 将l1的下一个节点与l2递归地合并
            l1.next = mergeTwoLists(l1.next, l2);
            return l1; // 返回合并后的链表头节点l1
        }
        // 如果l2的值小于等于l1的值
        else {
            // 将l2的下一个节点与l1递归地合并
            l2.next = mergeTwoLists(l1, l2.next);
            return l2; // 返回合并后的链表头节点l2
        }
    }
}

说明:
解法提供了递归方式来合并两个有序链表的操作。在算法中,首先处理特殊情况:如果l1为空,则直接返回l2作为合并后的链表;如果l2为空,则直接返回l1作为合并后的链表。接下来,判断l1和l2的值大小关系:如果l1的值小于l2的值,将l1的下一个节点与l2递归地合并,将合并结果作为l1的下一个节点,并返回l1作为合并后的链表头节点;如果l2的值小于等于l1的值,将l2的下一个节点与l1递归地合并,将合并结果作为l2的下一个节点,并返回l2作为合并后的链表头节点。最终,返回合并后的链表头节点。

C语言版本
#include <stdio.h>
#include <stdlib.h>

struct ListNode {
    int val;
    struct ListNode *next;
};

struct ListNode* mergeTwoLists(struct ListNode* l1, struct ListNode* l2) {
    // 如果l1为空,则直接返回l2作为合并后的链表
    if (l1 == NULL) {
        return l2;
    }
    // 如果l2为空,则直接返回l1作为合并后的链表
    else if (l2 == NULL) {
        return l1;
    }
    // 如果l1的值小于l2的值
    else if (l1->val < l2->val) {
        // 将l1的下一个节点与l2递归地合并
        l1->next = mergeTwoLists(l1->next, l2);
        return l1; // 返回合并后的链表头节点l1
    }
    // 如果l2的值小于等于l1的值
    else {
        // 将l2的下一个节点与l1递归地合并
        l2->next = mergeTwoLists(l1, l2->next);
        return l2; // 返回合并后的链表头节点l2
    }
}

说明:
在算法中,首先处理特殊情况:如果l1为空,则直接返回l2作为合并后的链表;如果l2为空,则直接返回l1作为合并后的链表。接下来,判断l1和l2的值的大小关系:如果l1的值小于l2的值,将l1的下一个节点与l2递归地合并,将合并结果作为l1的下一个节点,并返回l1作为合并后的链表头节点;如果l2的值小于等于l1的值,将l2的下一个节点与l1递归地合并,将合并结果作为l2的下一个节点,并返回l2作为合并后的链表头节点。最终,返回合并后的链表头节点。

Python3版本
# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, val=0, next=None):
#         self.val = val
#         self.next = next

class Solution:
    def mergeTwoLists(self, l1: ListNode, l2: ListNode) -> ListNode:
        if not l1:  # 如果l1为空,则直接返回l2
            return l2
        elif not l2:  # 如果l2为空,则直接返回l1
            return l1
        elif l1.val < l2.val:  # 如果l1的值小于l2的值
            l1.next = self.mergeTwoLists(l1.next, l2)  # 递归地将l1的下一个节点与l2合并
            return l1
        else:
            l2.next = self.mergeTwoLists(l1, l2.next)  # 递归地将l2的下一个节点与l1合并
            return l2

复杂度分析

  • 时间复杂度:O(n+m),其中 n 和 m 分别为两个链表的长度。因为每次调用递归都会去掉 l1 或者 l2 的头节点(直到至少有一个链表为空),函数 mergeTwoList 至多只会递归调用每个节点一次。因此,时间复杂度取决于合并后的链表长度,即 O(n+m)。
  • 空间复杂度:O(n+m),其中 n 和 m 分别为两个链表的长度。递归调用 mergeTwoLists 函数时需要消耗栈空间,栈空间的大小取决于递归调用的深度。结束递归调用时 mergeTwoLists 函数最多调用 n+m 次,因此空间复杂度为 O(n+m)。

总结

递归和迭代都可以用来解决将两个有序链表合并的问题。下面对比一下递归和迭代的解法特点:

递归解法迭代解法
优点简洁,易于理解和实现不涉及函数递归调用,避免递归开销和栈溢出问题
缺点可能产生多个函数调用,涉及函数调用开销和栈溢出问题需要使用额外变量保存当前节点,增加代码复杂性
时间复杂度O(m+n),其中m和n分别是两个链表的长度O(m+n),其中m和n分别是两个链表的长度
空间复杂度O(m+n),其中m和n分别是两个链表的长度O(1)

在实际应用中,如果链表较长,特别是超过系统栈的容量,采用迭代解法更为安全。而对于简短的链表,递归解法更为简洁和直观。

相似题目

题目难度链接
LeetCode 21 合并两个有序链表简单链接
LeetCode 23 合并K个有序链表困难链接
LeetCode 88 合并两个有序数组简单链接
LeetCode 56 合并区间中等链接
posted on 2024-04-01 09:00  vow007  阅读(108)  评论(0编辑  收藏  举报  来源