/*思路:定义dp[i]表示到达第i站的最小花费。所以 dp[i] = min(dp[i-1] + Cx, dp[i-1] + Cx, dp[i-3] + Cx...(直到i 和 (i-x) 两站的距离大于L3);*/
/*My Code:*/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 10007;
const int inf = 0x7fffffff;
int dis[N];
int dp[N];
int main() {
//freopen("data.in", "r", stdin);
int n, S, E, min;
int l1, l2, l3;
int c1, c2, c3;
int i, j, tmp;
memset(dp, 0, sizeof(dp));
memset(dis, 0, sizeof(dis));
scanf("%d%d%d%d%d%d", &l1, &l2, &l3, &c1, &c2, &c3);
scanf("%d", &n);
scanf("%d%d", &S, &E);
if(S > E) {tmp = S; S = E; E = tmp;}
for(i = 2; i <= n; i++)
scanf("%d", &dis[i]);
for(i = S+1; i <= E; i++) {
for(min = inf, j = i-1; j >= S; j--) {
tmp = dis[i] - dis[j];
if(tmp <= l1) tmp = dp[j] + c1;
else if(tmp <= l2 && tmp > l1) tmp = dp[j] + c2;
else if(tmp > l2 && tmp <= l3) tmp = dp[j] + c3;
else break;
if(min > tmp) min = tmp;
}
dp[i] = min;
}
printf("%d\n", dp[E]);
return 0;
}