Fork me on GitHub

【图像处理】基于OpenCV实现图像直方图的原理

背景

直方图均衡化归类于图像增强的一种图像处理方式。

图像的直方图是衡量图像像素分布的一种方式,可以通过分析像素分布,处理太亮或太暗的图像,通过均衡化处理使用直方图均衡化对图像进行优化,让图像变的清晰。

opencv官方对图像直方图的定义如下:

  • 直方图是图像中像素强度分布的图形表达方式.
  • 它统计了每一个强度值所具有的像素个数.

一、直方图计算的原理

一副图像实际上就是一个数字矩阵。

3x3的灰度图像由9个像素组成,每个像素都取值0-255中的一个值,0表示黑色,255表示白色,中间值是介于黑色和白色之间的灰度值。

如下以一个高度为3,宽度为3的图片为例说明直方图的计算。

  • 定义一个255大小的数组,用于保存灰度值出现的次数
  • 遍历图像的每一个元素,将像素的灰度值出现的次数统计到对应的灰度次数中
  • 将灰度值次数统计数组进行归一化处理(归一化到0-255范围内,便于绘图使用)
  • 将归一化的灰度次数进行绘图展示

如下图是计算直方图的过程。

 

 

 

二、直方图计算步骤

根据直方图计算的原理,如下我们就开始动手写一个计算图像直方图代码实现。

1. 加载图像

加载图像,并显示

    cv::Mat rawImage = cv::imread("demo1/leopard2.png", cv::IMREAD_ANYCOLOR);
    cv::imshow("rawImage", rawImage);

图像显示图像(我喜欢的那个小豹子)

2. 定义统计图像三个通道灰度值出现次数和归一化数的数组

定义并初始化次数数组,按照灰度值255,用于统计每个像素灰度值出现的次数。

        int histSize = 255;
        int histValues[3][255] = {};
        int histNormalizeValues[3][255] = {};
        for (int k = 0; k < histSize; ++k) {
            histValues[0][k] = 0;
            histValues[1][k] = 0;
            histValues[2][k] = 0;
            histNormalizeValues[0][k] = 0;
            histNormalizeValues[1][k] = 0;
            histNormalizeValues[2][k] = 0;
        }

3. 遍历图像,计算三个通道灰度值出现的次数

彩色图像由BGR三个通道构成,分别计算统计这三个通道的灰度值次数

       cv::Vec3b rgbPixel;
        // 遍历图像,统计BGR三个通道的图像的灰度值出现的次数
        for (int i = 0; i < rgbImage.rows; ++i) {
            for (int j = 0; j < rgbImage.cols; ++j) {
                // B G R
                rgbPixel = rgbImage.at<cv::Vec3b>(i, j);
                histValues[2][rgbPixel[2]] += 1;
                histValues[1][rgbPixel[1]] += 1;
                histValues[0][rgbPixel[0]] += 1;
            }
        }

4. 将上一步图像灰度值次数归一化到0-255之间

归一化方法的算法见之前的文章 https://www.cnblogs.com/voipman/p/5046153.html

        // 把如上的统计值归一化到0-255范围内
        calcNormalize(histValues[0], histNormalizeValues[0]);
        calcNormalize(histValues[1], histNormalizeValues[1]);
        calcNormalize(histValues[2], histNormalizeValues[2]);

归一化代码实现

    /**
     * 计算一个数组的归一化,此处归一化到0-255之间
     * @param srcValues
     * @param dstValues
     */
    void calcNormalize(int srcValues[255], int dstValues[255]) {
        int minValue = srcValues[0];
        int maxValue = srcValues[0];

        for (int i = 1; i < 255; ++i) {
            if (minValue > srcValues[i]) {
                minValue = srcValues[i];
            }
            if (maxValue < srcValues[i]) {
                maxValue = srcValues[i];
            }
        }
        int minMaxDiff = maxValue - minValue;
        for (int j = 0; j < 255; ++j) {
            dstValues[j] = static_cast<int>((float)(srcValues[j] - minValue) / (float)minMaxDiff * 255.);
        }
    }

5. 绘制直方图到页面

如下划线代码逻辑是画出3条线,分别是蓝绿红三条,每一条线连接前后两个点,依次连接0-254点形成对应的线。

        // 创建直方图画布
        int hist_w = 400; int hist_h = 400;
        int bin_w = cvRound( (double) hist_w/histSize );

        cv::Mat histImage( hist_w, hist_h, CV_8UC3, cv::Scalar( 255,255,255) );
        // 把三个通道的直方图归一化数据绘制在直方图上
        for (int i = 1; i < histSize; ++i) {
            cv::line(histImage,
                    cv::Point(bin_w * (i-1), hist_h - cvRound(histNormalizeValues[0][i-1])),
                    cv::Point(bin_w * (i), hist_h - cvRound(histNormalizeValues[0][i])),
                    cv::Scalar(0, 0, 255), 2,cv::LINE_AA, 0);
            cv::line(histImage,
                    cv::Point(bin_w * (i-1), hist_h - cvRound(histNormalizeValues[1][i-1])),
                    cv::Point(bin_w * (i), hist_h - cvRound(histNormalizeValues[1][i])),
                    cv::Scalar(0, 255, 0), 2,cv::LINE_AA, 0);
            cv::line(histImage,
                    cv::Point(bin_w * (i-1), hist_h - cvRound(histNormalizeValues[2][i-1])),
                    cv::Point(bin_w * (i), hist_h - cvRound(histNormalizeValues[2][i])),
                    cv::Scalar(255, 0, 0), 2,cv::LINE_AA, 0);
        }
        cv::imshow("histImage", histImage);

绘图中的绘线逻辑如下图中的绿线线段所示(连接前后两个点形成对应的线段):

6. 绘制直方图显示

 

直方图结果解析和说明:

  • 从这个直方图可以看出原始图像三个通道的数据都比较集中
  • 红色通道的数据集中在中间130左右,太黑和太白的数据比较少。
  • 绿色通道的数据集中在180左右,两边数据比较少。
  • 蓝色通道的数据集中在210作用的数值内,黑色的数据很少。

 

图像优化

使用直方图均衡化算法对图像进行均衡处理

    void EqualizeHist(cv::Mat &rgbImage) {
        std::vector<cv::Mat> rgbImages;
        cv::split(rgbImage, rgbImages);
        /// 应用直方图均衡化

        cv::Mat dstR, dstG, dstB;
        equalizeHist(rgbImages[0], dstB);
        equalizeHist(rgbImages[1], dstG);
        equalizeHist(rgbImages[2], dstR);

        std::vector<cv::Mat> grayHistImages;
        grayHistImages.push_back(dstB);
        grayHistImages.push_back(dstG);
        grayHistImages.push_back(dstR);
        cv::merge(grayHistImages, rgbImage);
    }

  

对图像做了直方图均衡化处理后的效果如下:

图像分析:

  • 图像看起来黑白分明,小豹子图像很清晰。

经过直方图均衡化处理后的图像,重新计算直方图,观察灰度值分布

 

 

图像分析:

  • 均衡化后的直方图均匀的分布在0-255之间。

 

OpenCV提供了一个简单的计算数组集(通常是图像或分割后的通道)的直方图,步骤如下

  • cv::split拆分图像到多个通道
  • 使用计算直方图函数 calcHist 计算图像的直方图
  • 使用函数 cv::normalize 归一化数组
  • 使用cv::line绘制直方图

 

参考材料:

opencv直方图均衡化处理 

opencv直方图计算

如下完整代码见 https://github.com/gityf/img-video/blob/master/opencv/hist.hpp

 

done.

祝玩的开心~

posted @ 2021-10-08 19:55  Mr.YF  阅读(1434)  评论(0编辑  收藏  举报