【分步详解】两个有序数组中的中位数和Top K问题
(这也是一道leetcode的经典题目:《LeetCode》解题笔记:004. Median of Two Sorted Arrays[H]
问题介绍
这是个超级超级经典的分治算法!!这个问题大致是说,如何在给定的两个有序数组里面找其中的中值,或者变形问题,如何在2个有序数组数组中查找Top K的值(Top K的问题可以转换成求第k个元素的问题)。这个算法在很多实际应用中都会用到,特别是在当前大数据的背景下。
我觉得下面的这个思路特别好,特别容易理解!!请按顺序看。是来自leetcode上的stellari英文答案,我整理并自己修改了一下。
预备知识
先解释下“割”
我们通过切一刀,能够把有序数组分成左右两个部分,切的那一刀就被称为割(Cut),割的左右会有两个元素,分别是左边最大值和右边最小值。
我们定义L = Max(LeftPart),R = Min(RightPart)
Ps. 割可以割在两个数中间,也可以割在1个数上,如果割在一个数上,那么这个数即属于左边,也属于右边。(后面讲单数组中值问题的时候会说)
比如说[2 3 5 7]这个序列,割就在3和5之间
[2 3 / 5 7]
中值就是(3+5)/2 = 4
如果[2 3 4 5 6]这个序列,割在4上,我们可以把4分成2个
[2 3 (4/4) 5 7]
中值就是(4+4)/2 = 4
这样可以保证不管中值是1个数还是2个数都能统一运算。
割和第k个元素
对于单数组,找其中的第k个元素特别好做,我们用割的思想就是:
常识1:如果在k的位置割一下,然后A[k]就是L。换言之,就是如果左侧有k个元素,A[k]属于左边部分的最大值。(都是明显的事情,这个不用解释吧!)
双数组
我们设:
\(C_i\)为第i个数组的割。
\(L_i\)为第i个数组割后的左元素.
\(R_i\)为第i个数组割后的右元素。
如何从双数组里取出第k个元素
- 首先\(L_i <= R_i\)是肯定的(因为数组有序,左边肯定小于右边)
- 如果我们让\(L_1 <= R_2\) && \(L_2 <= R_1\)
- 那么左半边 全小于右半边,如果左边的元素个数相加刚好等于k,那么第k个元素就是Max(L1,L2),参考上面常识1。
- 如果 L1>R2,说明数组1的左边元素太大(多),我们把C1减小,把C2增大。L2>R1同理,把C1增大,C2减小。
假设k=3
对于
\([1\ 4\ 7\ 9]\)
\([2\ 3\ 5]\)
设C1 = 2,那么C2 = k-C1 = 1
\([1\ 4/ 7\ 9]\)
\([2/3\ 5]\)
这时候,L1(4)>R2(3),说明C1要减小,C2要增大,C1 = 1,C2=k-C1 = 2
\([1/4\ 7\ 9]\)
\([2\ 3/5]\)
这时候,满足了\(L_1 <= R_2\) && \(L_2 <= R_1\),第3个元素就是Max(1,3) = 3。
如果对于上面的例子,把k改成4就恰好是中值。
下面具体来看特殊情况的中值问题。
双数组的奇偶
中值的关键在于,如何处理奇偶性,单数组的情况,我们已经讨论过了,那双数组的奇偶问题怎么办,m+n为奇偶处理方案都不同。
让数组恒为奇数
有没有办法让两个数组长度相加一定为奇数或偶数呢?
其实有的,虚拟加入‘#'(这个trick在manacher算法中也有应用),让数组长度恒为奇数(2n+1恒为奇数)。
Ps.注意是虚拟加,其实根本没这一步,因为通过下面的转换,我们可以保证虚拟加后每个元素跟原来的元素一一对应
映射关系
这有什么好处呢,为什么这么加?因为这么加完之后,每个位置可以通过/2得到原来元素的位置。
在虚拟数组里表示“割”
不仅如此,割更容易,如果割在‘#'上等于割在2个元素之间,割在数字上等于把数字划到2个部分。
奇妙的是不管哪种情况:
Li = (Ci-1)/2
Ri = Ci/2
例:
- 割在4/7之间‘#',C = 4,L=(4-1)/2=1 ,R=4/2=2
刚好是4和7的原来位置! - 割在3上,C = 3,L=(3-1)/2=1,R=3/2 =1,刚好都是3的位置!
剩下的事情就好办了,把2个数组看做一个虚拟的数组A,目前有2m+2n+2个元素,割在m+n+1处,所以我们只需找到m+n+1位置的元素和m+n+2位置的元素就行了。
左边:A[m+n] = Max(L1+L2)
右边:A[m+n+1] = Min(R1+R2)
Mid = (A[m+n]+A[m+n+1])/2
= (Max(L1+L2) + Min(R1+R2) )/2
至于在两个数组里找割的方案,就是上面的方案。
分治的思路
有了上面的知识后,现在的问题就是如何利用分治的思想。
怎么分?
最快的分的方案是二分,有2个数组,我们对哪个做二分呢?
根据之前的分析,我们知道了,只要C1或C2确定,另外一个也就确定了。这里,为了效率,我们肯定是选长度较短的做二分,假设为C1。
怎么治?
也比较简单,我们之前分析了:就是比较L1,L2和R1,R2。
- L1>R2,把C1减小,C2增大。—> C1向左二分
- L2>R1,把C1增大,C2减小。—> C1向右二分
越界问题
如果C1或C2已经到头了怎么办?
这种情况出现在:如果有个数组完全小于或大于中值。可能有4种情况:
- C1 = 0 —— 数组1整体都比中值大,L1 >R2,中值在2中
- C2 = 0 —— 数组1整体都比中值小,L1 <R2,中值在1中
- C1 = n*2 —— 数组1整体都比中值小,L1 <R2,中位数在2中
- C2 = m*2 —— 数组1整体都比中值大,L1 >R2,中位数在1中
考虑下面两种情况了,解决方案:
- 如果C1 = 0 —> 那么我们缩小L1,L1 = INT_MIN,保证判断正确。
- 如果C1 = n*2 —> 那么我们增大R1,R1 = INT_MAX,保证判断正确。
剩下两种情况解决方案类似。
代码
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int n = nums1.size();
int m = nums2.size();
if(n > m) //保证数组1一定最短
return findMedianSortedArrays(nums2,nums1);
int L1,L2,R1,R2,c1,c2,lo = 0, hi = 2*n; //我们目前是虚拟加了'#'所以数组1是2*n+1长度
while(lo <= hi) //二分
{
c1 = (lo+hi)/2; //c1是二分的结果
c2 = m+n- c1;
L1 = (c1 == 0)?INT_MIN:nums1[(c1-1)/2]; //map to original element
R1 = (c1 == 2*n)?INT_MAX:nums1[c1/2];
L2 = (c2 == 0)?INT_MIN:nums2[(c2-1)/2];
R2 = (c2 == 2*m)?INT_MAX:nums2[c2/2];
if(L1 > R2)
hi = c1-1;
else if(L2 > R1)
lo = c1+1;
else
break;
}
return (max(L1,L2)+ min(R1,R2))/2.0;
}
};