[Bzoj4818]序列计数(矩阵乘法+DP)
Description
Solution
容斥原理,答案为忽略质数限制的方案数减去不含质数的方案数
然后矩阵乘法优化一下DP即可
Code
#include <cstdio>
#include <algorithm>
#include <cstring>
#define N 120
using namespace std;
const int MOD=20170408;
int n,m,p,pri[2000010],cnt[N],top;
bool vis[20000010];
struct info{
int A[N][N];
info(){for(int i=0;i<p;++i)for(int j=0;j<p;++j)A[i][j]=0;}
int *operator [](int x){return A[x];}
friend info operator *(info a,info b){
info c;
for(int i=0;i<p;++i)
for(int j=0;j<p;++j)
for(int k=0;k<p;++k)
c[i][j]=(c[i][j]*1ll+1ll*a[i][k]*b[k][j]%MOD)%MOD;
return c;
}
}t1,t2,g;
inline info Pow(info A,int c){
info res;
for(int i=0;i<p;++i) res[i][i]=1;
for(;c;c>>=1,A=A*A) if(c&1) res=res*A;
return res;
}
int main(){
scanf("%d%d%d",&n,&m,&p);
vis[1]=1;
for (int i=2;i<=m;i++){
if (!vis[i])pri[++top]=i;
for (int j=1;j<=top&&i*1ll*pri[j]<=m;j++){
vis[i*pri[j]]=1;
if(i%pri[j]==0)break;
}
}
for(int i=1;i<=m;++i) cnt[i%p]++;
for(int i=0;i<p;++i)for(int j=0;j<p;++j)g[i][j]=cnt[(i-j+p)%p];
t1[0][0]=t2[0][0]=1;
t1=t1*Pow(g,n);
memset(cnt,0,sizeof(cnt));
for(int i=1;i<=m;++i) if(vis[i]) cnt[i%p]++;
for(int i=0;i<p;++i)for(int j=0;j<p;++j)g[i][j]=cnt[(i-j+p)%p];
t2=t2*Pow(g,n);
printf("%d\n",(t1[0][0]-t2[0][0]+MOD)%MOD);
return 0;
}