Leo Zhang

A simple man with my own ideal

12 2010 档案

SVM学习——软间隔优化
摘要:回想SVM学习——线性学习器一文中提到的Rosenblatt感知器的原始形式,当时的讨论是基于输入空间线性可分的情况,包括后来的最大间隔算法,通过核函数隐式的将输入空间映射到了一个高维特征空间中了,此时的假设同样是映射后的数据线性可分,那自然就会想到如果输入空间或者由核函数映射得到的特征空间依然是线性不可分的可怎么办呀? 阅读全文

posted @ 2010-12-22 11:09 Leo Zhang 阅读(8301) 评论(9) 推荐(5) 编辑

SVM学习——统计学习理论
摘要:关于统计学习的理论博大精深,想要弄明白是需要花费很大功夫的,涉及到方方面面的数学知识(比如泛函分析、高等数学、概率论、统计学…….),我这里也就是把一些基本概念、理论规整一下。 存在一个未知的系统、给定的输入样本空间和这些输入样本通过处理后的输出。机器学习的过程可以看做是这样的:利用机器学习的方法,根据和得到一个学习机(也可以叫模型),学习机在接受训练、测试样本以外的样本后得到的输出可以被认为是未知系统针对输入得到的输出的近似,所以这个学习机可以认为是对的内在规律的近似。 阅读全文

posted @ 2010-12-18 00:07 Leo Zhang 阅读(7169) 评论(6) 推荐(3) 编辑

SVM学习——核函数
摘要:还记得上篇末提到的对于优化问题: 阅读全文

posted @ 2010-12-13 16:59 Leo Zhang 阅读(42570) 评论(29) 推荐(11) 编辑

SVM学习——求解二次规划问题
摘要:上一篇最后提到要解决最优化问题,稍微对它做一下改动,如下: 阅读全文

posted @ 2010-12-06 14:07 Leo Zhang 阅读(18107) 评论(9) 推荐(3) 编辑

SVM学习——线性学习器
摘要:变量之间存在的一次函数关系是线性关系,那么线性分类就应该是利用这样一种线性关系将输入学习器的样例按照其标记分开。一个线性函数的因变量值是连续的,而分类问题则一般是离散的,这个实值函数可以这样表示: 阅读全文

posted @ 2010-12-02 12:32 Leo Zhang 阅读(6437) 评论(7) 推荐(2) 编辑

导航

统计信息

点击右上角即可分享
微信分享提示