3.Ceres官方教程-非线性最小二乘~Powell’s Function(鲍威尔方程)

考虑一个稍微复杂一点的例子 – 求解鲍威尔方程的最小值。我们定义参数块

是关于上面四个残差值的方程。我们希望寻找到一组x,使最小。

同样,第一步是定义目标函数中的每一项需评估的仿函数,以评估的代码为例

struct F4 {
  template <typename T>
  bool operator()(const T* const x1, const T* const x4, T* residual) const {
    residual[0] = sqrt(10.0) * (x1[0] - x4[0]) * (x1[0] - x4[0]);
    return true;
  }
};

类似地,我们也可以分别地定义类F1,F2,F3取评估
使用这些,问题可以构造如下:

double x1 =  3.0; double x2 = -1.0; double x3 =  0.0; double x4 = 1.0;

Problem problem;

// Add residual terms to the problem using the using the autodiff
// wrapper to get the derivatives automatically.
problem.AddResidualBlock(
  new AutoDiffCostFunction<F1, 1, 1, 1>(new F1), nullptr, &x1, &x2);
problem.AddResidualBlock(
  new AutoDiffCostFunction<F2, 1, 1, 1>(new F2), nullptr, &x3, &x4);
problem.AddResidualBlock(
  new AutoDiffCostFunction<F3, 1, 1, 1>(new F3), nullptr, &x2, &x3)
problem.AddResidualBlock(
  new AutoDiffCostFunction<F4, 1, 1, 1>(new F4), nullptr, &x1, &x4);

注意,每个ResidualBlock只依赖于对应残差对象所依赖的两个参数,而不是所有四个参数

实例代码在ceres-solver-1.14.0/examples/powell.cc中

#include <vector>
#include "ceres/ceres.h"
#include "gflags/gflags.h"
#include "glog/logging.h"

using ceres::AutoDiffCostFunction;
using ceres::CostFunction;
using ceres::Problem;
using ceres::Solver;
using ceres::Solve;

struct F1 {
  template <typename T> bool operator()(const T* const x1,
                                        const T* const x2,
                                        T* residual) const {
    // f1 = x1 + 10 * x2;
    residual[0] = x1[0] + 10.0 * x2[0];
    return true;
  }
};

struct F2 {
  template <typename T> bool operator()(const T* const x3,
                                        const T* const x4,
                                        T* residual) const {
    // f2 = sqrt(5) (x3 - x4)
    residual[0] = sqrt(5.0) * (x3[0] - x4[0]);
    return true;
  }
};

struct F3 {
  template <typename T> bool operator()(const T* const x2,
                                        const T* const x3,
                                        T* residual) const {
    // f3 = (x2 - 2 x3)^2
    residual[0] = (x2[0] - 2.0 * x3[0]) * (x2[0] - 2.0 * x3[0]);
    return true;
  }
};

struct F4 {
  template <typename T> bool operator()(const T* const x1,
                                        const T* const x4,
                                        T* residual) const {
    // f4 = sqrt(10) (x1 - x4)^2
    residual[0] = sqrt(10.0) * (x1[0] - x4[0]) * (x1[0] - x4[0]);
    return true;
  }
};

// DEFINE_string(minimizer, "trust_region",
//               "Minimizer type to use, choices are: line_search & trust_region");

int main(int argc, char** argv) {
//   CERES_GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
//   google::InitGoogleLogging(argv[0]);

  double x1 =  3.0;
  double x2 = -1.0;
  double x3 =  0.0;
  double x4 =  1.0;

  Problem problem;
  // Add residual terms to the problem using the using the autodiff
  // wrapper to get the derivatives automatically. The parameters, x1 through
  // x4, are modified in place.
  problem.AddResidualBlock(new AutoDiffCostFunction<F1, 1, 1, 1>(new F1),
                           NULL,
                           &x1, &x2);
  problem.AddResidualBlock(new AutoDiffCostFunction<F2, 1, 1, 1>(new F2),
                           NULL,
                           &x3, &x4);
  problem.AddResidualBlock(new AutoDiffCostFunction<F3, 1, 1, 1>(new F3),
                           NULL,
                           &x2, &x3);
  problem.AddResidualBlock(new AutoDiffCostFunction<F4, 1, 1, 1>(new F4),
                           NULL,
                           &x1, &x4);

  Solver::Options options;
//   LOG_IF(FATAL, !ceres::StringToMinimizerType(FLAGS_minimizer,
//                                               &options.minimizer_type))
//       << "Invalid minimizer: " << FLAGS_minimizer
//       << ", valid options are: trust_region and line_search.";

  options.max_num_iterations = 100;
  options.linear_solver_type = ceres::DENSE_QR;
  options.minimizer_progress_to_stdout = true;

  std::cout << "Initial x1 = " << x1
            << ", x2 = " << x2
            << ", x3 = " << x3
            << ", x4 = " << x4
            << "\n";

  // Run the solver!
  Solver::Summary summary;
  Solve(options, &problem, &summary);

  std::cout << summary.FullReport() << "\n";
  std::cout << "Final x1 = " << x1
            << ", x2 = " << x2
            << ", x3 = " << x3
            << ", x4 = " << x4
            << "\n";
  return 0;
}

结果

Initial x1 = 3, x2 = -1, x3 = 0, x4 = 1
iter      cost      cost_change  |gradient|   |step|    tr_ratio  tr_radius  ls_iter  iter_time  total_time
   0  1.075000e+02    0.00e+00    1.55e+02   0.00e+00   0.00e+00  1.00e+04        0    4.00e-05    2.61e-04
   1  5.036190e+00    1.02e+02    2.00e+01   2.16e+00   9.53e-01  3.00e+04        1    9.81e-05    3.78e-04
   2  3.148168e-01    4.72e+00    2.50e+00   6.23e-01   9.37e-01  9.00e+04        1    2.29e-05    4.08e-04
   3  1.967760e-02    2.95e-01    3.13e-01   3.08e-01   9.37e-01  2.70e+05        1    3.73e-05    4.71e-04
   4  1.229900e-03    1.84e-02    3.91e-02   1.54e-01   9.37e-01  8.10e+05        1    7.39e-05    5.51e-04
   5  7.687123e-05    1.15e-03    4.89e-03   7.69e-02   9.37e-01  2.43e+06        1    7.08e-05    6.27e-04
   6  4.804625e-06    7.21e-05    6.11e-04   3.85e-02   9.37e-01  7.29e+06        1    5.50e-05    6.87e-04
   7  3.003028e-07    4.50e-06    7.64e-05   1.92e-02   9.37e-01  2.19e+07        1    5.54e-05    7.47e-04
   8  1.877006e-08    2.82e-07    9.54e-06   9.62e-03   9.37e-01  6.56e+07        1    2.07e-05    7.92e-04
   9  1.173223e-09    1.76e-08    1.19e-06   4.81e-03   9.37e-01  1.97e+08        1    2.31e-05    8.20e-04
  10  7.333425e-11    1.10e-09    1.49e-07   2.40e-03   9.37e-01  5.90e+08        1    5.54e-05    8.81e-04
  11  4.584044e-12    6.88e-11    1.86e-08   1.20e-03   9.37e-01  1.77e+09        1    2.08e-05    9.08e-04
  12  2.865573e-13    4.30e-12    2.33e-09   6.02e-04   9.37e-01  5.31e+09        1    2.06e-05    9.33e-04
  13  1.791438e-14    2.69e-13    2.91e-10   3.01e-04   9.37e-01  1.59e+10        1    2.07e-05    9.59e-04
  14  1.120029e-15    1.68e-14    3.64e-11   1.51e-04   9.37e-01  4.78e+10        1    2.06e-05    9.85e-04
trust_region_minimizer.cc:649 Terminating: Gradient tolerance reached. Gradient max norm: 3.642190e-11 <= 1.000000e-10

Solver Summary (v 1.14.0-eigen-(3.3.7)-no_lapack-eigensparse-openmp-no_tbb-no_custom_blas)

                                     Original                  Reduced
Parameter blocks                            4                        4
Parameters                                  4                        4
Residual blocks                             4                        4
Residuals                                   4                        4

Minimizer                        TRUST_REGION

Dense linear algebra library            EIGEN
Trust region strategy     LEVENBERG_MARQUARDT

                                        Given                     Used
Linear solver                        DENSE_QR                 DENSE_QR
Threads                                     1                        1
Linear solver ordering              AUTOMATIC                        4

Cost:
Initial                          1.075000e+02
Final                            1.120029e-15
Change                           1.075000e+02

Minimizer iterations                       15
Successful steps                           15
Unsuccessful steps                          0

Time (in seconds):
Preprocessor                         0.000221

  Residual only evaluation           0.000062 (14)
  Jacobian & residual evaluation     0.000403 (15)
  Linear solver                      0.000057 (14)
Minimizer                            0.000823

Postprocessor                        0.000004
Total                                0.001048

Termination:                      CONVERGENCE (Gradient tolerance reached. Gradient max norm: 3.642190e-11 <= 1.000000e-10)

Final x1 = 0.000146222, x2 = -1.46222e-05, x3 = 2.40957e-05, x4 = 2.40957e-05

很容易看出,这个问题的最优解是在x1=0,x2=0,x3=0,x4=0时,目标函数值为0。

posted on 2021-09-24 15:12  JJ_S  阅读(512)  评论(0编辑  收藏  举报