USACO Section 1.1 : Programming Contest Problem Types
Programming Contest Problem Types
Hal Burch conducted an analysis over spring break of 1999 and made an amazing discovery: there are only 16 types of programming contest problems! Furthermore, the top several comprise almost 80% of the problems seen at the IOI. Here they are:
- Dynamic Programming
- Greedy
- Complete Search
- Flood Fill
- Shortest Path
- Recursive Search Techniques
- Minimum Spanning Tree
- Knapsack
- Computational Geometry
- Network Flow
- Eulerian Path
- Two-Dimensional Convex Hull
- BigNums
- Heuristic Search
- Approximate Search
- Ad Hoc Problems
The most challenging problems are Combination Problems which involve a loop (combinations, subsets, etc.) around one of the above algorithms - or even a loop of one algorithm with another inside it. These seem extraordinarily tricky to get right, even though conceptually they are ``obvious''.
If you can master solving just 40% of these problem types, you can almost guarantee a silver medal at the IOI. Mastering 80% moves you into the gold range almost for sure. Of course, `mastery' is a tough nut to crack! We'll be supplying a plethora of problems so that you can hone your skills in the quest for international fame.
Hal Burch在1999年春假进行了分析,作出了惊人的发现:只有16个类型的程序设计竞赛的问题!此外,前几个包括近80 %的问题出现在IOI。在这里,他们是:
Dynamic Programming (动态规划)
Greedy (贪心算法)
Complete Search (穷举搜索)
Flood Fill (漫水法填充)
Shortest Path (最短路径)
Recursive Search Techniques (回溯搜索技术)
Minimum Spanning Tree (最小生成树)
Knapsack (背包问题)
Computational Geometry (计算几何学)
Network Flow (网络流)
Eulerian Path (欧拉回路)
Two-Dimensional Convex Hull (二- 空间的中凸壳)
BigNums (大数问题)
Heuristic Search (启发式搜索)
Approximate Search (近似搜索)
Ad Hoc Problems (特别问题)
最挑战性的问题是包括一个环的组合问题 (组合,子集等.) 在上述的运算法则之一的周围 - 或更甚至一个运算法则的一个环由于另外的在它之内。 这些非常地狡猾的正确, 即使概念地他们是“obvious”。
如果你能征服解决仅仅 40% 这些问题类型,你能几乎保证在 IOI 的一个银的奖牌。 征服 80% 几乎能够带你进入金牌的范围之内。当然,“征服”是把一个强硬的坚果弄碎! 我们将会供应问题的一个过多以便你为国际的名望能在探索中用磨刀石磨你的技术。