Fork me on GitHub

死锁终结者:顺序锁和轮询锁!

死锁(Dead Lock)指的是两个或两个以上的运算单元(进程、线程或协程),都在等待对方停止执行,以取得系统资源,但是没有一方提前退出,就称为死锁。
image.png
死锁示例代码如下:

public class DeadLockExample {
    public static void main(String[] args) {
        Object lockA = new Object(); // 创建锁 A
        Object lockB = new Object(); // 创建锁 B

        // 创建线程 1
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                synchronized (lockA) {
                    System.out.println("线程 1:获取到锁 A!");
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println("线程 1:等待获取 B...");
                    synchronized (lockB) {
                        System.out.println("线程 1:获取到锁 B!");
                    }
                }
            }
        });
        t1.start(); // 运行线程

        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                synchronized (lockB) {
                    System.out.println("线程 2:获取到锁 B!");
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println("线程 2:等待获取 A...");
                    synchronized (lockA) {
                        System.out.println("线程 2:获取到锁 A!");
                    }
                }
            }
        });
        t2.start(); // 运行线程
    }
}

以上程序的执行结果如下:
image.png
从上述结果可以看出,线程 1 和线程 2 都进入了死锁状态,相互都在等待对方释放锁。

从上述示例分析可以得出,产生死锁需要满足以下 4 个条件:

  1. 互斥条件:指运算单元(进程、线程或协程)对所分配到的资源具有排它性,也就是说在一段时间内某个锁资源只能被一个运算单元所占用。
  2. 请求和保持条件:指运算单元已经保持至少一个资源,但又提出了新的资源请求,而该资源已被其它运算单元占有,此时请求运算单元阻塞,但又对自己已获得的其它资源保持不放。
  3. 不可剥夺条件:指运算单元已获得的资源,在未使用完之前,不能被剥夺。
  4. 环路等待条件:指在发生死锁时,必然存在运算单元和资源的环形链,即运算单元正在等待另一个运算单元占用的资源,而对方又在等待自己占用的资源,从而造成环路等待的情况。

只有这 4 个条件同时满足,才会造成死锁的问题。

那么也就是说,要产生死锁必须要同时满足以上 4 个条件才行,那我们就可以通过破坏任意一个条件来解决死锁问题了。

死锁解决方案分析

接下来我们来分析一下,产生死锁的 4 个条件,哪些是可以破坏的?哪些是不能被破坏的?

  • 互斥条件:系统特性,不能被破坏。
  • 请求和保持条件:可以被破坏。
  • 不可剥夺条件:系统特性,不能被破坏。
  • 环路等待条件:可以被破坏。

通过上述分析,我们可以得出结论,我们只能通过破坏请求和保持条件或者是环路等待条件,从而来解决死锁的问题,那上线,我们就先从破坏“环路等待条件”开始来解决死锁问题。

解决方案1:顺序锁

所谓的顺序锁指的是通过有顺序的获取锁,从而避免产生环路等待条件,从而解决死锁问题的。

当我们没有使用顺序锁时,程序的执行可能是这样的:
image.png
线程 1 先获取了锁 A,再获取锁 B,线程 2 与 线程 1 同时执行,线程 2 先获取锁 B,再获取锁 A,这样双方都先占用了各自的资源(锁 A 和锁 B)之后,再尝试获取对方的锁,从而造成了环路等待问题,最后造成了死锁的问题。

此时我们只需要将线程 1 和线程 2 获取锁的顺序进行统一,也就是线程 1 和线程 2 同时执行之后,都先获取锁 A,再获取锁 B,执行流程如下图所示:
image.png
因为只有一个线程能成功获取到锁 A,没有获取到锁 A 的线程就会等待先获取锁 A,此时得到锁 A 的线程继续获取锁 B,因为没有线程争抢和拥有锁 B,那么得到锁 A 的线程就会顺利的拥有锁 B,之后执行相应的代码再将锁资源全部释放,然后另一个等待获取锁 A 的线程就可以成功获取到锁资源,执行后续的代码,这样就不会出现死锁的问题了。

顺序锁的实现代码如下所示:

public class SolveDeadLockExample {
    public static void main(String[] args) {
        Object lockA = new Object(); // 创建锁 A
        Object lockB = new Object(); // 创建锁 B
        // 创建线程 1
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                synchronized (lockA) {
                    System.out.println("线程 1:获取到锁 A!");
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println("线程 1:等待获取 B...");
                    synchronized (lockB) {
                        System.out.println("线程 1:获取到锁 B!");
                    }
                }
            }
        });
        t1.start(); // 运行线程
        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                synchronized (lockA) {
                    System.out.println("线程 2:获取到锁 A!");
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println("线程 2:等待获取B...");
                    synchronized (lockB) {
                        System.out.println("线程 2:获取到锁 B!");
                    }
                }
            }
        });
        t2.start(); // 运行线程
    }
}

以上程序的执行结果如下:
image.png
从上述执行结果可以看出,程序并没有出现死锁的问题。

解决方案2:轮询锁

轮询锁是通过打破“请求和保持条件”来避免造成死锁的,它的实现思路简单来说就是通过轮询来尝试获取锁,如果有一个锁获取失败,则释放当前线程拥有的所有锁,等待下一轮再尝试获取锁。

轮询锁的实现需要使用到 ReentrantLock 的 tryLock 方法,具体实现代码如下:

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class SolveDeadLockExample {
    
    public static void main(String[] args) {
        Lock lockA = new ReentrantLock(); // 创建锁 A
        Lock lockB = new ReentrantLock(); // 创建锁 B

        // 创建线程 1(使用轮询锁)
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                // 调用轮询锁
                pollingLock(lockA, lockB);
            }
        });
        t1.start(); // 运行线程

        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                lockB.lock(); // 加锁
                System.out.println("线程 2:获取到锁 B!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 2:等待获取 A...");
                    lockA.lock(); // 加锁
                    try {
                        System.out.println("线程 2:获取到锁 A!");
                    } finally {
                        lockA.unlock(); // 释放锁
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockB.unlock(); // 释放锁
                }
            }
        });
        t2.start(); // 运行线程
    }
    
     /**
     * 轮询锁
     */
    public static void pollingLock(Lock lockA, Lock lockB) {
        while (true) {
            if (lockA.tryLock()) { // 尝试获取锁
                System.out.println("线程 1:获取到锁 A!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 1:等待获取 B...");
                    if (lockB.tryLock()) { // 尝试获取锁
                        try {
                            System.out.println("线程 1:获取到锁 B!");
                        } finally {
                            lockB.unlock(); // 释放锁
                            System.out.println("线程 1:释放锁 B.");
                            break;
                        }
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockA.unlock(); // 释放锁
                    System.out.println("线程 1:释放锁 A.");
                }
            }
            // 等待一秒再继续执行
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

以上程序的执行结果如下:
image.png
从上述结果可以看出,以上代码也没有出现死锁的问题。

总结

本文介绍了解决死锁的 2 种方案:

  • 第 1 种顺序锁:通过改变获取锁的顺序也就打破“环路请求条件”来避免死锁问题的发生;
  • 第 2 种轮询锁:通过轮询的方式也就是打破“请求和拥有条件”来解决死锁问题。它的实现思路是,通过自旋的方式来尝试获取锁,在获取锁的途中,如果有任何一个锁获取失败,则释放之前获取的所有锁,等待一段时间之后再次执行之前的流程,这样就避免一个锁一直(被一个线程)占用的尴尬了,从而避免了死锁问题。

参考 & 鸣谢

《Java并发编程实战》

并发原创文章推荐

  1. 线程的 4 种创建方法和使用详解!
  2. Java中用户线程和守护线程区别这么大?
  3. 深入理解线程池 ThreadPool
  4. 线程池的7种创建方式,强烈推荐你用它...
  5. 池化技术到达有多牛?看了线程和线程池的对比吓我一跳!
  6. 并发中的线程同步与锁
  7. synchronized 加锁 this 和 class 的区别!
  8. volatile 和 synchronized 的区别
  9. 轻量级锁一定比重量级锁快吗?
  10. 这样终止线程,竟然会导致服务宕机?
  11. SimpleDateFormat线程不安全的5种解决方案!
  12. ThreadLocal不好用?那是你没用对!
  13. ThreadLocal内存溢出代码演示和原因分析!
  14. Semaphore自白:限流器用我就对了!
  15. CountDownLatch:别浪,等人齐再团!
  16. CyclicBarrier:人齐了,司机就可以发车了!
  17. synchronized 优化手段之锁膨胀机制!
  18. synchronized 中的 4 个优化,你知道几个?
  19. ReentrantLock 中的 4 个坑!
  20. 图解:为什么非公平锁的性能更高?
  21. 死锁的 4 种排查工具!

关注公号「Java中文社群」查看更多有意思、涨知识的 Java 并发文章。

posted @ 2021-08-28 09:55  磊哥|www.javacn.site  阅读(860)  评论(0编辑  收藏  举报