CF1444A Solution

题目链接

题解

由题易得,当\(p<q\)\(p\%q\not=0\)\(x=p\)

其他情况:先使\(x=p\)

\(p\)分解为\(k_1^{n_1}\cdot k_2^{n_2}\cdot k_3^{n_3}...\cdot k_m^{n_m}\),若将\(k\)中任意一个满足\(k_i^{n_i}|p\)\(k_i\),使\(x\)\(k_i\)的幂数\(\le n_i\),则\(x\%q\not=0\)。因此可以枚举\(k_i\),求出最大的\(x\)即可。

AC代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
signed main()
{
	int t,q,p;
	scanf("%lld",&t);
	while(t--)
	{
		scanf("%lld%lld",&p,&q);
		if(p<q || p%q) {printf("%lld\n",p); continue;}
		int qwq=0,qaq,qoq=p,quq,ans=0;
		while(p%q==0) {qwq++; p/=q;}
		for(int i=2;i*i<=q;i++)
		{
			if(q%i==0)
			{
				quq=1;
				while(q%i==0) {q/=i; quq*=i;}
				qaq=qoq;
				while(qaq%quq==0) qaq/=quq;
				while(qaq%quq!=0) qaq*=i;
				ans=max(ans,qaq/i);
			}
		}	
		if(q>1)
		{
			qaq=qoq;
			while(qaq%q==0) qaq/=q;
			ans=max(ans,qaq);
		} 
		printf("%lld\n",ans);
	}
	return 0;
}
posted @ 2020-12-20 10:54  violet_holmes  阅读(71)  评论(0编辑  收藏  举报