用Python学分析 - 二项分布

 

二项分布(Binomial Distribution)
对Bernoulli试验序列的n次序列,结局A出现的次数x的概率分布服从二项分布
- 两分类变量并非一定会服从二项分布
- 模拟伯努利试验中n次独立的重复,每次试验成功的概率为pi

特征值
- 均值(数学期望)和方差:
  - 不同的值,二项式分布有着不同的形态和偏度值
  - pi值越大,呈负偏度;pi值越小,呈正偏度
  - 当 pi = 0.5时,分布是对称的
  - 当 n * pi 与 n * (1-pi) >= 5 时,样本比例p的抽样分布趋向于正态分布
- 当 n 较大,pi不太极端时,可以采用正态近似方法计算概率分布规律

应用

- 博彩行业的规则设定
- 正常值范围的设定(例:医疗行业)

# 对二项分布概念的理解及计算

 1 # 对二项分布概念的理解及计算
 2 
 3 from scipy.stats import binom
 4 
 5 pi = .3; n = 10
 6 k = 2; m = 8
 7 
 8 # 求成功次数为i的概率
 9 pk = 0
10 for i in range(n):
11     p = binom( n, pi ).pmf( i ) 
12     if i <= k:
13         pk += p
14     print( 'P(x = {0:d}) = {1:.4f}'.format( i , p ))
15 
16 # 求成功小于k次的概率
17 print('-'*20)
18 p = binom( n, pi ).cdf( k )
19 print( 'P(x <= {0:d}) = {1:.4f}'.format( k , p ))
20 print( '比较累加值:', pk)
21 
22 # 求成功大于k次,小于m次的概率
23 print('-'*20)
24 p = binom( n, pi ).cdf( m ) - binom( n, pi ).cdf( k )
25 print( 'P({0:d} < x <= {1:d}) = {2:.4f}'.format( k , m, p ))
View Code

运行结果:

 

# 比较:p对结果的影响

 1 import numpy as np
 2 from scipy.stats import binom
 3 import matplotlib.pyplot as plt
 4 
 5 num_trials = 60
 6 x = np.arange(num_trials)
 7 
 8 plt.plot(x, binom(num_trials, 0.2).pmf(x), 'o-', label='p=0.2')
 9 plt.plot(x, binom(num_trials, 0.5).pmf(x), 'o-', label='p=0.5')
10 plt.plot(x, binom(num_trials, 0.7).pmf(x), 'o-', label='p=0.7')
11 plt.legend()
12 plt.title( '二项分布:p对结果的影响' )
13 plt.show()
14 print('当p不同时,成功m次的能性的最大值都出现在均值处,对应概率为n*p')
View Code

结果:

# 比较:n对结果的影响

 1 import numpy as np
 2 from scipy.stats import binom
 3 import matplotlib.pyplot as plt
 4 
 5 n1 = 10
 6 n2 = 15
 7 n3 = 20
 8 p = 0.5
 9 x = np.arange( max([n1,n2,n3])+1 )
10 
11 plt.plot( x, binom.pmf( x, p = 0.5, n = n1), 'o-', label='n=10')
12 plt.plot( x, binom.pmf( x, p = 0.5, n = n2), 'o-', label='n=15')
13 plt.plot( x, binom.pmf( x, p = 0.5, n = n3), 'o-', label='n=20')
14 plt.legend()
15 plt.title( '二项分布:n对结果的影响' )
16 plt.show()
17 print('当N不同时,成功m次的可能性的最大值都出现在均值处,对应概率为n*p。')
View Code

结果:

 

posted on 2019-04-29 17:21  马露天使  阅读(3453)  评论(0编辑  收藏  举报

导航