对数几率回归(逻辑回归)原理与Python实现
一、对数几率和对数几率回归
在对数几率回归中,我们将样本的模型输出\(y^*\)定义为样本为正例的概率,将\(\frac{y^*}{1-y^*}\)定义为几率(odds),几率表示的是样本作为正例的相对可能性。将几率取对便可以得到对数几率(log odds,logit)。
而对数几率回归(Logistic Regression)则试图从样本集中学得模型\(w^Tx\)并使其逼近该样本的对数几率,从而可以得到:
二、Sigmoid函数
通过求解\(conditoin1\)可以得到:
由此我们可以知道样本\(x_i\)为正例的概率可以通过函数\(h(w^Tx_i)=\frac{1}{1+e^{-w^Tx_i}}\)来表示。而其中的函数\(h(z)\)便被称为Sigmoid函数,其图像如下:
求其导数:
这是一个很好的性质,有利于简化后面优化模型时的计算。
三、极大似然法
通过前面的推导,可以得到:
合并两个式子,则有:
求出了样本标记的分布律,便可以通过极大似然法来估计分布律中的参数\(w\)。先写出极大似然函数:
对极大似然函数取对可以得到对数似然函数:
在前面乘上负数因子便可以得到对数几率回归的代价函数:
通过最小化上述代价函数便可以估计出参数\(w\)的值。
四、梯度下降法
通过上述步骤,优化对数几率回归模型的关键变成了求解:
在《线性回归:梯度下降法优化》中,我已经详细介绍了梯度下降法的数学原理,这里直接使用梯度下降法来对对数几率回归模型进行优化。
对\(J(w)\)进行求导:
将\(\frac{\partial J}{\partial w}\)带入参数\(w\)的更新公式\(w^*=w-\eta\frac{\partial J}{\partial w}\),最终得到\(w\)的更新公式如下:
四、Python实现
梯度下降优化算法:
def fit(self, X, y):
self.W = np.zeros(X.shape[1] + 1)
for i in range(self.max_iter):
delta = self._activation(self._linear_func(X)) - y
self.W[0] -= self.eta * delta.sum()
self.W[1:] -= self.eta * (delta @ X)
return self
导入鸢尾花数据集进行测试:
if __name__ == "__main__":
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
irirs = datasets.load_iris()
X = irirs["data"][:100]
y = irirs["target"][:100]
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, test_size=0.3)
classifier = LRClassifier().fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(classification_report(y_test, y_pred))
分类报告如下: