Generate...|

园龄:粉丝:关注:

07 2023 档案

【深度学习入门向】使用几个技巧提高对 CIFAR10 分类的准确性
摘要:## Mixup, TTA, and Ensemble 在[上一篇文章](https://www.cnblogs.com/violeshnv/p/17583908.html)中使用了普通的 CNN 实现了对 CIFAR10 数据集 89% 的准确率。 本文通过实现三种技术来进一步提高准确率 - Mi
151
0
0
【深度学习入门向】使用简单的卷积神经网络对 CIFAR10 数据集进行分类
摘要:## Shallow CNN 从最简单的卷积神经网络(CNN)开始。卷积神经网络是神经网络的一种(子集),其结构主要包括以卷积层、池化层为主的特征提取部分和全连接层为主的分类部分。 - 卷积层使用卷积核对输入进行卷积操作。卷积操作的目的是对图像进行扫描以找到最接近卷积核所代表的特征。其输出称为特征图
200
0
0
点击右上角即可分享
微信分享提示
深色
回顶
收起
  1. 1 とおいよびごえ 凋叶棕
  2. 2 かぜのねいろ 凋叶棕
  3. 3 Milky Way Train 流派未階堂
  4. 4 nostalgia 流派未階堂
  5. 5 桜花繚乱 はちみつれもん
  6. 6 胡蝶之夢 はちみつれもん
  7. 7 色は散りゆく はちみつれもん
  8. 8 暮色蒼然 はちみつれもん
  9. 9 追想、桜ノ國 はちみつれもん
  10. 10 意にそぐわぬリターニー 凋叶棕
とおいよびごえ - 凋叶棕
00:00 / 00:00
An audio error has occurred, player will skip forward in 2 seconds.