泊松求和公式
泊松求和公式
\[\sum_{k=-\infty}^{\infty}\delta(t-kT)=\frac{1}{T}\sum_{k=-\infty}^{\infty}e^{-j\frac{2\pi}{T}kt}
\]
证明:
令
\[g(t)=\sum_{k=-\infty}^{\infty}\delta(t-kT)
\]
可以发现\(g(t)\)是周期为T的周期函数。那么对\(g(t)\)进行傅里叶级数展开
\[\begin{aligned}
g(t)&=\sum_{k=-\infty}^{\infty}G_{k}e^{j\frac{2\pi}{T}kt}\\
G_{k} &= \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}g(t)e^{-j\frac{2\pi}{T}kt}\\
&=\color{red}{\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=-\infty}^{\infty}\delta(t-nT)e^{-j\frac{2\pi}{T}kt}}\\
&=\color{red}{\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}\delta(t)e^{-j\frac{2\pi}{T}kt}}\\
&=\frac{1}{T}
\end{aligned}\]
上式中的红色行运用了\(\delta(t)\)函数的抽样特性
\[\int_{-\infty}^{\infty}\delta(t)f(t)dt=\int_{-\infty}^{\infty}\delta(t)f(0)dt=f(0)\int_{-\infty}^{\infty}\delta(t)=f(0)
\]
所以可得
\[g(t)=\sum_{k=-\infty}^{\infty}\delta(t-kT)=\frac{1}{T}\sum_{k=-\infty}^{\infty}e^{-j\frac{2\pi}{T}kt}
\]