【数字图像处理】阈值处理
图像阈值处理是实现图像分割的一种方法,常用的阈值分割方法有简单阈值,自适应阈值,Otsu's二值化等。
cv2.threshold()可以用来进行图像阈值处理,cv2.threshold(src, thresh, maxval, type) 第一个参数是原图像,第二个参数是对像素值进行分类的阈值,第三个参数是当像素值高于(小于)阈值时,应该被赋予的新的像素值,第四个参数是阈值方法。函数有两个返回值,一个为retVal, 一个阈值化处理之后的图像。
常用的阈值方法有:
全局阈值:
自适应阈值
当同一幅图像不同部分具有不同的亮度时,全局阈值并不适用,此时我们会采用自适应阈值,自适应阈值会在图像上每一个小区域计算与其对应的阈值。可以使用cv2.adaptiveThreshold()要传入三个参数:阈值计算方法,邻域大小,常数C, 阈值等于平均值或者加权平均值减去这个常数。
import numpy as np import cv2 from matplotlib import pyplot as plt img = cv2.imread('/home/vincent/Pictures/work/uy_gnix_iac.jpg') ret, thresh1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) ret, thresh2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV) ret, thresh3 = cv2.threshold(img, 127, 255, cv2.THRESH_TRUNC) ret, thresh4 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO) ret, thresh5 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV) images = [img, thresh1, thresh2, thresh3, thresh4, thresh5] for i in range(6): plt.subplot(2,3, i+1) plt.imshow(images[i]) plt.suptitle('fixed threshold') img = cv2.imread('/home/vincent/Pictures/work/barbara.png', 0) print(img.shape) thresh6 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2) thresh7 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) ret, thresh8 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) images2 = [img, thresh6, thresh7, thresh8] plt.figure(2) for i in range(4): plt.subplot(1,4,i+1) plt.imshow(images2[i],'gray') plt.suptitle('adaptive threshold') plt.show()