概率统计丨陈希孺《概率论与数理统计》思维导图

除了线性代数,概率论(Probability theory)和统计学(Statistics)也是机器学习中常用的数学工具。陈希孺老先生的《概率论与数理统计》在知乎上的评价很高,我在上学期花时间读了一遍,读完的感觉是,本书的概率论部分可读性较强,举了很多例子帮助理解,通俗易懂,阐明了很多原理和联系,如二项分布、泊松分布、超几何分布、几何分布之间的关系。但数理统计部分,更加严谨的概念定义和公理化相对晦涩,让我不易理解。当然,主要原因还是我水平太低。我觉得本书的数理统计部分可以结合其他材料学习。

学习资源

思维导图

posted @   vincent1997  阅读(10490)  评论(1编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
阅读排行:
· 25岁的心里话
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 零经验选手,Compose 一天开发一款小游戏!
· 因为Apifox不支持离线,我果断选择了Apipost!
· 通过 API 将Deepseek响应流式内容输出到前端
点击右上角即可分享
微信分享提示