量子计算丨Superdense coding

Superdense coding是一种量子通信的方式。A和B共享一个纠缠态,发送者A通过更改自己的量子比特从而向接收者B传输经典比特的信息如(00,01,10 or 11),下面简单介绍一下整个过程。

  1. 起初有一个双量子比特\(|B_{00}>=\frac{1}{\sqrt{2}}(|00>+|11>)\),它可以通过作用\(CNOT(H\otimes I|00>)\)获取。

\(|B_{00}>=\frac{1}{\sqrt{2}}(|00>+|11>)\)又称EPR pair
其有一个性质:叠加态中,若第一个量子比特经测量坍塌到\(|0>\),第二个量子比特也必然坍塌到\(|0>\);反之亦然。

  1. 假设有两个人A和B,他们相距很远。我们将该\(|B_{00}>\)的第一个比特分给A、第二个比特分给B。因此A获得叠加态比特\(q_A=\frac{1}{2}(|0>+|1>)\),B获得叠加态比特\(q_B=\frac{1}{2}(|0>+|1>)\),且\(q_A\)\(q_B\)之间存在纠缠关系(该描述方式可能有误,因为EPR状态无法分解成两个单比特,它们的系数也不会是\(\frac{1}{2}\),这里写出只为帮助理解)。因此\(|B_{00}>=\frac{1}{2}(|0_A0_B+1_A1_B>)\)

  2. 现在A想向B传输信息\(xy(xy=00,01,10 or 11)\),但其只能操作自己的比特\(q_A\),他该怎么办?

    A通过量子门改变自己的比特\(q_A\)使\(|B_{00}>\)变为\(|B_{xy}>\),并发送\(q_A\);当B接收到\(q_A\)后即得到\(|B_{xy}>\)

    \(xy\) \(B_{00}\) \(q_A\) gate \(q_A\)(new) \(B_{xy}\)
    00 \(\mid B_{00}>=\frac{1}{\sqrt{2}}(\mid \textbf{0}0>+\mid \textbf{1}1>)\) \(\frac{1}{2}(\mid 0>+\mid1>)=\frac{1}{2}\left[\begin{matrix} 1 & 0 \\0 & 1 \end{matrix} \right]\) \(I=\left[\begin{matrix} 1 & 0 \\0 & 1 \end{matrix} \right]\) \(\frac{1}{2}(\mid 0>+\mid1>)=\frac{1}{2}\left[\begin{matrix} 1 & 0 \\0 & 1 \end{matrix} \right]\) \(\mid B_{00}>=\frac{1}{\sqrt{2}}(\mid \textbf{0}0>+\mid \textbf{1}1>)\)
    01 \(\mid B_{00}>=\frac{1}{\sqrt{2}}(\mid \textbf{0}0>+\mid \textbf{1}1>)\) \(\frac{1}{2}(\mid 0>+\mid1>)=\frac{1}{2}\left[\begin{matrix} 1 & 0 \\0 & 1 \end{matrix} \right]\) \(Z=\left[\begin{matrix} 1 & 0 \\0 & -1 \end{matrix} \right]\) \(\frac{1}{2}(\mid 0>-\mid1>)=\frac{1}{2}\left[\begin{matrix} 1 & 0 \\0 & -1 \end{matrix} \right]\) \(\mid B_{01}>=\frac{1}{\sqrt{2}}(\mid \textbf{0}0>-\mid \textbf{1}1>)\)
    10 \(\mid B_{00}>=\frac{1}{\sqrt{2}}(\mid \textbf{0}0>+\mid \textbf{1}1>)\) \(\frac{1}{2}(\mid 0>+\mid1>)=\frac{1}{2}\left[\begin{matrix} 1 & 0 \\0 & 1 \end{matrix} \right]\) \(X=\left[\begin{matrix} 0 &1 \\1&0 \end{matrix} \right]\) \(\frac{1}{2}(\mid 1>+\mid0>)=\frac{1}{2}\left[\begin{matrix} 0 & 1 \\1 & 0 \end{matrix} \right]\) \(\mid B_{10}>=\frac{1}{\sqrt{2}}(\mid \textbf{1}0>+\mid \textbf{0}1>)\)
    11 \(\mid B_{00}>=\frac{1}{\sqrt{2}}(\mid \textbf{0}0>+\mid \textbf{1}1>)\) \(\frac{1}{2}(\mid 0>+\mid1>)=\frac{1}{2}\left[\begin{matrix} 1 & 0 \\0 & 1 \end{matrix} \right]\) \(Z\ast X=\left[\begin{matrix} 0 & 1 \\-1 & 0 \end{matrix} \right]\) \(\frac{1}{2}(\mid 1>-\mid0>)=\frac{1}{2}\left[\begin{matrix} 0 & -1 \\1 & 0 \end{matrix} \right]\) \(\mid B_{11}>=\frac{1}{\sqrt{2}}(\mid \textbf{1}0>-\mid \textbf{0}1>)\)
  3. 随后B再进行解码\(CNOT(H\otimes I)B_|xy>=|xy>\),从而得到\(|xy>\)

上述过程,A只改变了自身的一个量子位比特,就向B传输了两个比特的信息,若A和B之前没有共享纠缠态,这是不能发生的。
此外在安全性上,如果A和B之间有个C,他想窃取信息。但由于没有B的量子位,其无法从A发送的比特中得到任何信息。并且如果他测量A的量子位,B也会同时坍塌,这样B就会知道信息被窃听了。

Reference:https://en.wikipedia.org/wiki/Superdense_coding

posted @ 2020-01-11 23:50  vincent1997  阅读(919)  评论(0编辑  收藏  举报