python 函数-装饰器

装饰器

装饰器的原理就是利用《闭包函数》来实现,闭包函数的原理就是包含内层函数的return和外层环境变量。

装饰器本质上是一个Python函数,其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值(return)也是一个函数对象。

它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等场景。

 

下面就是一个简单的装饰器,  需要注意的是 将 index加上装饰器后就等于: 

index = timer(index) ,

第一步将 index的内存地址传递给timer, timer中内嵌函数定义新功能并包含传递进去的index。

第二步将 timer中的内嵌函数return给 index,这样也就实现了功能的增加。

 

 

带参数的装饰器

装饰器还有更大的灵活性,例如带参数的装饰器:在上面的装饰器调用中,比如 @use_logging,该装饰器唯一的参数就是执行业务的函数。装饰器的语法允许我们在调用时,提供其它参数,比如@decorator(a)。这 样,就为装饰器的编写和使用提供了更大的灵活性。

def use_logging(level):
    def decorator(func):
        def wrapper(*args, **kwargs):
            if level == "warn":
                logging.warn("%s is running" % func.__name__)
            return func(*args)
        return wrapper

    return decorator

@use_logging(level="warn")
def foo(name='foo'):
    print("i am %s" % name)

foo()

上 面的use_logging是允许带参数的装饰器。它实际上是对原有装饰器的一个函数封装,并返回一个装饰器。我们可以将它理解为一个含有参数的闭包。当 我 们使用@use_logging(level="warn")调用的时候,Python能够发现这一层的封装,并把参数传递到装饰器的环境中。


类装饰器

再来看看类装饰器,相比函数装饰器,类装饰器具有灵活度大、高内聚、封装性等优点。使用类装饰器还可以依靠类内部的__call__方法,当使用 @ 形式将装饰器附加到函数上时,就会调用此方法。

class Foo(object):
    def __init__(self, func):
      self._func = func

    def __call__(self):
      print ('class decorator runing')
      self._func()
      print ('class decorator ending')

@Foo
def bar():
    print ('bar')

bar()

 

functools.wraps

使用装饰器极大地复用了代码,但是他有一个缺点就是原函数的元信息不见了,比如函数的docstring、__name__、参数列表,先看例子:

装饰器

def logged(func):
    def with_logging(*args, **kwargs):
        print func.__name__ + " was called"
        return func(*args, **kwargs)
    return with_logging
函数

@logged
def f(x):
   """does some math"""
   return x + x * x
该函数完成等价于:


def f(x):
    """does some math"""
    return x + x * x
f = logged(f)
不难发现,函数f被with_logging取代了,当然它的docstring,__name__就是变成了with_logging函数的信息了。

print f.__name__    # prints 'with_logging'
print f.__doc__     # prints None

  

这个问题就比较严重的,好在我们有functools.wraps,wraps本身也是一个装饰器,它能把原函数的元信息拷贝到装饰器函数中,这使得装饰器函数也有和原函数一样的元信息了。

from functools import wraps
def logged(func):
    @wraps(func)
    def with_logging(*args, **kwargs):
        print func.__name__ + " was called"
        return func(*args, **kwargs)
    return with_logging

@logged
def f(x):
    """does some math"""
    return x + x * x

print f.__name__  # prints 'f'
print f.__doc__   # prints 'does some math'

 

装饰器的顺序

@a
@b
@c
def f ():

等效于
  f = a(b(c(f)))

 

posted @ 2016-12-14 15:45  Vincen_shen  阅读(203)  评论(0)    收藏  举报