[Ceoi2008]order
Description
有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成。 现在给出这些参数,求最大利润
Input
第一行给出 N,M(1<=N<=1200,1<=M<=1200) 下面将有N块数据,每块数据第一行给出完成这个任务能赚到的钱(其在[1,5000])及有多少道工序 接下来若干行每行两个数,分别描述完成工序所需要的机器编号及租用它的费用(其在[1,20000]) 最后M行,每行给出购买机器的费用(其在[1,20000])
Output
最大利润
Sample Input
2 3
100 2
1 30
2 20
100 2
1 40
3 80
50
80
110
Sample Output
50
Solution
这个,非常明显的一道最大权闭合子图。就是有一个租用机器的操作非常的让人不舒服。然后想想,我们这图里面的inf边是不是还可以再利用一下,于是把inf改成了租用机器的价格。很容易发现这个满足流量平衡的要求。然后,就没了。
Code
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define re register
#define inf 400000000
#define MAXN 2500
#define MAXM 5000000
using namespace std;
int n,s,q,t,l,cur[200051];
struct po
{
int nxt,to,w;
}edge[MAXM];
int head[MAXN],dep[MAXN],num=-1,tot,m;
inline int read()
{
int x=0,c=1;
char ch=' ';
while((ch>'9'||ch<'0')&&ch!='-')ch=getchar();
while(ch=='-')c*=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-'0',ch=getchar();
return x*c;
}
inline void add_edge(int from,int to,int w)
{
edge[++num].nxt=head[from];
edge[num].to=to;
edge[num].w=w;
head[from]=num;
}
inline void add(int from,int to,int w)
{
add_edge(from,to,w);
add_edge(to,from,0);
}
inline bool bfs()
{
memset(dep,0,sizeof(dep));
queue<int> q;
while(!q.empty())
q.pop();
q.push(s);
dep[s]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
for(re int i=head[u];i!=-1;i=edge[i].nxt)
{
int v=edge[i].to;
if(dep[v]==0&&edge[i].w>0)
{
dep[v]=dep[u]+1;
if(v==t)
return 1;
q.push(v);
}
}
}
return 0;
}
inline int dfs(int u,int dis)
{
if(u==t)
return dis;
int diss=0;
for(re int& i=cur[u];i!=-1;i=edge[i].nxt)
{
int v=edge[i].to;
if(edge[i].w!=0&&dep[v]==dep[u]+1)
{
int check=dfs(v,min(dis,edge[i].w));
if(check>0)
{
dis-=check;
diss+=check;
edge[i].w-=check;
edge[i^1].w+=check;
if(dis==0) break;
}
}
}
return diss;
}
inline int dinic()
{
int ans=0;
while(bfs())
{
for(re int i=0;i<=t;i++)
cur[i]=head[i];
while(int d=dfs(s,inf))
ans+=d;
}
return ans;
}
int main()
{
memset(head,-1,sizeof(head));
n=read();m=read();
s=0;t=n+m+1;
for(re int i=1;i<=n;i++){
int raise=read(),x=read();
tot+=raise;
add(s,i,raise);
for(re int j=1;j<=x;j++){
int v=read(),cost=read();
add(i,n+v,cost);
}
}
for(re int i=1;i<=m;i++)
add(i+n,t,read());
cout<<tot-dinic();
return 0;
}
对于作者转载文章,欢迎继续转载。
对于作者原创文章,请注明出处之后转载。