Buuoj reverse3
1 打开reverse3.exe
2 ida32
2.1 丢进ida反编译后,搜索字符串“flag”可以找到以下源码
从下往上分析:
(1)如果Dest和Str2前v2个字节相同,则得到的是正确的flag。而v2就是Dest的长度;
(2)for循环对Dest进行修改,第j位元素的ASCII加上j;
(3)将v1拷贝给Dest;
(4)将Str经过sub_4110BE()
后赋值给v1。sub_4110BE()
只会return一个sub_411AB0()
所以这个函数至关重要。
Str2的值为:
2.2 sub_411AB0函数
由于截图截不全,直接把代码贴过来
void *__cdecl sub_411AB0(char *a1, unsigned int a2, int *a3)
{
int v4; // STE0_4
int v5; // STE0_4
int v6; // STE0_4
int v7; // [esp+D4h] [ebp-38h]
signed int i; // [esp+E0h] [ebp-2Ch]
unsigned int v9; // [esp+ECh] [ebp-20h]
int v10; // [esp+ECh] [ebp-20h]
signed int v11; // [esp+ECh] [ebp-20h]
void *Dst; // [esp+F8h] [ebp-14h]
char *v13; // [esp+104h] [ebp-8h]
if ( !a1 || !a2 )
return 0;
v9 = a2 / 3;
if ( (signed int)(a2 / 3) % 3 )
++v9;
v10 = 4 * v9;
*a3 = v10;
Dst = malloc(v10 + 1);
if ( !Dst )
return 0;
j_memset(Dst, 0, v10 + 1);
v13 = a1;
v11 = a2;
v7 = 0;
while ( v11 > 0 )
{
byte_41A144[2] = 0;
byte_41A144[1] = 0;
byte_41A144[0] = 0;
for ( i = 0; i < 3 && v11 >= 1; ++i )
{
byte_41A144[i] = *v13;
--v11;
++v13;
}
if ( !i )
break;
switch ( i )
{
case 1:
*((_BYTE *)Dst + v7) = aAbcdefghijklmn[(signed int)(unsigned __int8)byte_41A144[0] >> 2];
v4 = v7 + 1;
*((_BYTE *)Dst + v4++) = aAbcdefghijklmn[((byte_41A144[1] & 0xF0) >> 4) | 16 * (byte_41A144[0] & 3)];
*((_BYTE *)Dst + v4++) = aAbcdefghijklmn[64];
*((_BYTE *)Dst + v4) = aAbcdefghijklmn[64];
v7 = v4 + 1;
break;
case 2:
*((_BYTE *)Dst + v7) = aAbcdefghijklmn[(signed int)(unsigned __int8)byte_41A144[0] >> 2];
v5 = v7 + 1;
*((_BYTE *)Dst + v5++) = aAbcdefghijklmn[((byte_41A144[1] & 0xF0) >> 4) | 16 * (byte_41A144[0] & 3)];
*((_BYTE *)Dst + v5++) = aAbcdefghijklmn[((byte_41A144[2] & 0xC0) >> 6) | 4 * (byte_41A144[1] & 0xF)];
*((_BYTE *)Dst + v5) = aAbcdefghijklmn[64];
v7 = v5 + 1;
break;
case 3:
*((_BYTE *)Dst + v7) = aAbcdefghijklmn[(signed int)(unsigned __int8)byte_41A144[0] >> 2];
v6 = v7 + 1;
*((_BYTE *)Dst + v6++) = aAbcdefghijklmn[((byte_41A144[1] & 0xF0) >> 4) | 16 * (byte_41A144[0] & 3)];
*((_BYTE *)Dst + v6++) = aAbcdefghijklmn[((byte_41A144[2] & 0xC0) >> 6) | 4 * (byte_41A144[1] & 0xF)];
*((_BYTE *)Dst + v6) = aAbcdefghijklmn[byte_41A144[2] & 0x3F];
v7 = v6 + 1;
break;
}
}
*((_BYTE *)Dst + v7) = 0;
return Dst;
}
- 比较关键的地方从while里的for循环开始,它把v13的值传给了
byte_41A144
。v13实际上就是a1(我们再对应main里的变量,实际它就是那个我们输入的Str)。 - 然后这个i实际经过循环以后就是3,它是在for循环以前就被声明了。所以while中最核心的是
- 似曾相识,它就是base64,我在Base64百度百科中找到了最容易对应理解的一段话。
以下的移位在上述解释中没提到
很容易理解,这里移位前进行的变换对移位结果其实并没有啥影响。byte_41A144[1]
&0xF0
也就是11110000
以后再右移4位和直接移位道理是一样的。下边那行同理。
查看编码表aAbcdefghijklmn
,是常规的Base64编码表
3 解密
以上分析完,思路已经很清晰了。顺过程是:输入的字符串会先经过base64后,利用for循环把第j位元素的ASCII加上j再赋给第j位的元素。所以逆过程得到flag的步骤是:
import base64
str2 = 'e3nifIH9b_C@n@dH'
rawDest = ""
for i in range(len(str2)):
rawDest += chr(ord(str2[i]) - i)
print(rawDest)
flag = base64.b64decode(rawDest)
print(flag)
flag{i_l0ve_you}