Leecode335
You are given an array x of n
positive numbers. You start at point x[0]
metres to the north, then x[2]
metres to the south, x[3]
metres to the east and so on. In other words, after each move your direction changes counter-clockwise.
Write a one-pass algorithm with O(1)
extra space to determine, if your path crosses itself, or not.
Example 1:
Given x = [2, 1, 1, 2]
,
┌───┐
│ │
└───┼──>
│
Return true (self crossing)
Example 2:
Given x = [1, 2, 3, 4]
,
┌──────┐
│ │
│
│
└────────────>
Return false (not self crossing)
Example 3:
Given x = [1, 1, 1, 1]
,
┌───┐
│ │
└───┼>
Return true (self crossing)
这个问题一开始真是想的太简单了,以为每四个一组之后重置相对原点坐标来算就可以,而忽略了很多情况,比如:完全可能前四个没相遇,但在第五步的时候去和之前的轨迹相交!
所以看了一下hint,提示要用binary tree。怎么处理呢?
这里参考了下Marshall专栏的解法,分x.size()<4,=4,>4的情况来讨论。【感觉没有用到二叉树的内容】找规律的时候发现,只需要看每一步x[n]是否比它之前两步x[n-2]的距离长,如果长则交不上,
而比其短则有可能相交,再继续判断。
class Solution { public: bool isSelfCrossing(vector<int>& x) { if(x.size()<4) return false; if(x.size()==4) { if(x[2]>x[0]) return false; else if(x[3]>=x[1]) return true; else return false; } int k=2; while(k<x.size()&&x[k]>x[k-2]) { k++; } if(k==x.size()) return false; else if(x[k]<x[k-2]-x[k-4]) { k++; while(k<x.size()&&x[k]<x[k-2]) k++; if(k==x.size()) return false; else return true; } else { k++; if(k==x.size()) return false; else { if(x[k]>=x[k-2]-x[k-4]) return true; else { k++; while(k<x.size()&&x[k]<x[k-2]) k++; if(k==x.size()) return false; else return true; } } } } };