[HDU2866] Special Prime (数论,公式)

Special Prime

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 676    Accepted Submission(s): 358

Problem Description

Give you a prime number p, if you could find some natural number (0 is not inclusive) n and m, satisfy the following expression:
  

We call this p a “Special Prime”.
AekdyCoin want you to tell him the number of the “Special Prime” that no larger than L.
For example:
 If L =20
13 + 7*12 = 23
83 + 19*82 = 123
That is to say the prime number 7, 19 are two “Special Primes”.

 

Input
The input consists of several test cases.
Every case has only one integer indicating L.(1<=L<=106)
 
Output
For each case, you should output a single line indicate the number of “Special Prime” that no larger than L. If you can’t find such “Special Prime”, just output “No Special Prime!”
 
Sample Input
7 777
 
Sample Output
1 10
 
 
题意
求1—L范围内,满足 n3+p*n2=m的质数p的数量(m,n > 0) 。
 
题解
0~30 O( P) 暴力枚举 n,m 判断 p 是否合法,在 n,m 枚举结束时,取一个较大值 P。
 
100 O[ (√L)](实际可能更优)
由原式化简可得 n2 * (n+p) = m3
 
若 n2 和 n+p 间有公共素因子 p ,
那么 n+p = k * p ,
即 n = p * (k-1) ,
带回原式得到 p3 * (k-1)* k = m3
易证 (k-1)* k 不能用某一个正整数的三次幂表示,所以此情况不成立。
 
由此可以假设 n = a3n+p = b
相减得到 p = b3 - a
根据立方差公式有 p = (b-a)  * (a+ a*b + b2) ,
由于 p 是素数,(a+ a*b + b2) != 1 ,所以 b-a = 1,
带入 b 化简可得 p = 3 * a * a + 3 * a + 1
暴力枚举 a ,算出 p ,判断 p 是否是素数,统计一下就得到答案了。
 
 
代码
 1 #include<cstdio>
 2 using namespace std;
 3 int L,ans;
 4 bool Prime(int x){
 5     for(int i=2;i*i<=x;i++)
 6         if(x%i==0) return 0;
 7     return 1;
 8 }
 9 int main(){
10     while(~scanf("%d",&L)){
11         ans=0;
12         for(int i=1;3*i*i+3*i+1<=L;i++){
13             if(Prime(3*i*i+3*i+1)) ans++;
14         }
15         if(ans==0) printf("No Special Prime!\n");
16         else printf("%d\n",ans);
17     }
18     return 0;
19 }

 原题链接

posted @ 2018-08-15 20:29  ViaCol  阅读(412)  评论(0编辑  收藏  举报
这句一言出处是 『《clannad》』
这句一言出处是 『《clannad》』