poj 2942 Knights of the Round Table 双连通分量
白书上的代码
#include<cstdio> #include<stack> #include<vector> #include<algorithm> #include<cstring> using namespace std; struct Edge { int u, v; }; const int maxn = 1000 + 10; int pre[maxn], iscut[maxn], bccno[maxn], dfs_clock, bcc_cnt; // 割顶的bccno无意义 vector<int> G[maxn], bcc[maxn]; stack<Edge> S; int dfs(int u, int fa) { int lowu = pre[u] = ++dfs_clock; int child = 0; for(int i = 0; i < G[u].size(); i++) { int v = G[u][i]; Edge e; e.u=u; e.v=v; if(!pre[v]) { // 没有访问过v S.push(e); child++; int lowv = dfs(v, u); lowu = min(lowu, lowv); // 用后代的low函数更新自己 if(lowv >= pre[u]) { iscut[u] = true; bcc_cnt++; bcc[bcc_cnt].clear(); for(;;) { Edge x = S.top(); S.pop(); if(bccno[x.u] != bcc_cnt) { bcc[bcc_cnt].push_back(x.u); bccno[x.u] = bcc_cnt; } if(bccno[x.v] != bcc_cnt) { bcc[bcc_cnt].push_back(x.v); bccno[x.v] = bcc_cnt; } if(x.u == u && x.v == v) break; } } } else if(pre[v] < pre[u] && v != fa) { S.push(e); lowu = min(lowu, pre[v]); // 用反向边更新自己 } } if(fa < 0 && child == 1) iscut[u] = 0; return lowu; } void find_bcc(int n) { // 调用结束后S保证为空,所以不用清空 memset(pre, 0, sizeof(pre)); memset(iscut, 0, sizeof(iscut)); memset(bccno, 0, sizeof(bccno)); dfs_clock = bcc_cnt = 0; for(int i = 0; i < n; i++) if(!pre[i]) dfs(i, -1); } int odd[maxn], color[maxn]; bool bipartite(int u, int b) { for(int i = 0; i < G[u].size(); i++) { int v = G[u][i]; if(bccno[v] != b) continue; if(color[v] == color[u]) return false; if(!color[v]) { color[v] = 3 - color[u]; if(!bipartite(v, b)) return false; } } return true; } int A[maxn][maxn]; int main() { int kase = 0, n, m; while(scanf("%d%d", &n, &m) == 2 && n) { for(int i = 0; i < n; i++) G[i].clear(); memset(A, 0, sizeof(A)); for(int i = 0; i < m; i++) { int u, v; scanf("%d%d", &u, &v); u--; v--; A[u][v] = A[v][u] = 1; } for(int u = 0; u < n; u++) for(int v = u+1; v < n; v++) if(!A[u][v]) { G[u].push_back(v); G[v].push_back(u); } find_bcc(n); memset(odd, 0, sizeof(odd)); for(int i = 1; i <= bcc_cnt; i++) { memset(color, 0, sizeof(color)); for(int j = 0; j < bcc[i].size(); j++) bccno[bcc[i][j]] = i; // 主要是处理割顶 int u = bcc[i][0]; color[u] = 1; if(!bipartite(u, i)) for(int j = 0; j < bcc[i].size(); j++) odd[bcc[i][j]] = 1; } int ans = n; for(int i = 0; i < n; i++) if(odd[i]) ans--; printf("%d\n", ans); } return 0; }