简单Linux C线程池

  大多数的网络服务器,包括Web服务器都具有一个特点,就是单位时间内必须处理数目巨大的连接请求,但是处理时间却是比较短的。在传统的多线程服务器模型中是这样实现的:一旦有个请求到达,就创建一个新的线程,由该线程执行任务,任务执行完毕之后,线程就退出。这就是"即时创建,即时销毁"的策略。尽管与创建进程相比,创建线程的时间已经大大的缩短,但是如果提交给线程的任务是执行时间较短,而且执行次数非常频繁,那么服务器就将处于一个不停的创建线程和销毁线程的状态。这笔开销是不可忽略的,尤其是线程执行的时间非常非常短的情况。

  线程池就是为了解决上述问题的,它的实现原理是这样的:在应用程序启动之后,就马上创建一定数量的线程,放入空闲的队列中。这些线程都是处于阻塞状态,这些线程只占一点内存,不占用CPU。当任务到来后,线程池将选择一个空闲的线程,将任务传入此线程中运行。当所有的线程都处在处理任务的时候,线程池将自动创建一定的数量的新线程,用于处理更多的任务。执行任务完成之后线程并不退出,而是继续在线程池中等待下一次任务。当大部分线程处于阻塞状态时,线程池将自动销毁一部分的线程,回收系统资源。

  下面是一个简单线程池的实现,这个线程池的代码是我参考网上的一个例子实现的,由于找不到出处了,就没办法注明参考自哪里了。它的方案是这样的:程序启动之前,初始化线程池,启动线程池中的线程,由于还没有任务到来,线程池中的所有线程都处在阻塞状态,当一有任务到达就从线程池中取出一个空闲线程处理,如果所有的线程都处于工作状态,就添加到队列,进行排队。如果队列中的任务个数大于队列的所能容纳的最大数量,那就不能添加任务到队列中,只能等待队列不满才能添加任务到队列中。

  主要由两个文件组成一个threadpool.h头文件和一个threadpool.c源文件组成。源码中已有重要的注释,就不加以分析了。

  threadpool.h文件:

struct job
{
    void* (*callback_function)(void *arg);    //线程回调函数
    void *arg;                                //回调函数参数
    struct job *next;
};

struct threadpool
{
    int thread_num;                   //线程池中开启线程的个数
    int queue_max_num;                //队列中最大job的个数
    struct job *head;                 //指向job的头指针
    struct job *tail;                 //指向job的尾指针
    pthread_t *pthreads;              //线程池中所有线程的pthread_t
    pthread_mutex_t mutex;            //互斥信号量
    pthread_cond_t queue_empty;       //队列为空的条件变量
    pthread_cond_t queue_not_empty;   //队列不为空的条件变量
    pthread_cond_t queue_not_full;    //队列不为满的条件变量
    int queue_cur_num;                //队列当前的job个数
    int queue_close;                  //队列是否已经关闭
    int pool_close;                   //线程池是否已经关闭
};

//================================================================================================
//函数名:                   threadpool_init
//函数描述:                 初始化线程池
//输入:                    [in] thread_num     线程池开启的线程个数
//                         [in] queue_max_num  队列的最大job个数 
//输出:                    无
//返回:                    成功:线程池地址 失败:NULL
//================================================================================================
struct threadpool* threadpool_init(int thread_num, int queue_max_num);

//================================================================================================
//函数名:                    threadpool_add_job
//函数描述:                  向线程池中添加任务
//输入:                     [in] pool                  线程池地址
//                          [in] callback_function     回调函数
//                          [in] arg                     回调函数参数
//输出:                     无
//返回:                     成功:0 失败:-1
//================================================================================================
int threadpool_add_job(struct threadpool *pool, void* (*callback_function)(void *arg), void *arg);

//================================================================================================
//函数名:                    threadpool_destroy
//函数描述:                   销毁线程池
//输入:                      [in] pool                  线程池地址
//输出:                      无
//返回:                      成功:0 失败:-1
//================================================================================================
int threadpool_destroy(struct threadpool *pool);

//================================================================================================
//函数名:                    threadpool_function
//函数描述:                  线程池中线程函数
//输入:                     [in] arg                  线程池地址
//输出:                     无  
//返回:                     无
//================================================================================================
void* threadpool_function(void* arg);

  threadpool.c文件:

#include "threadpool.h"

struct threadpool* threadpool_init(int thread_num, int queue_max_num)
{
    struct threadpool *pool = NULL;
    do 
    {
        pool = malloc(sizeof(struct threadpool));
        if (NULL == pool)
        {
            printf("failed to malloc threadpool!\n");
            break;
        }
        pool->thread_num = thread_num;
        pool->queue_max_num = queue_max_num;
        pool->queue_cur_num = 0;
        pool->head = NULL;
        pool->tail = NULL;
        if (pthread_mutex_init(&(pool->mutex), NULL))
        {
            printf("failed to init mutex!\n");
            break;
        }
        if (pthread_cond_init(&(pool->queue_empty), NULL))
        {
            printf("failed to init queue_empty!\n");
            break;
        }
        if (pthread_cond_init(&(pool->queue_not_empty), NULL))
        {
            printf("failed to init queue_not_empty!\n");
            break;
        }
        if (pthread_cond_init(&(pool->queue_not_full), NULL))
        {
            printf("failed to init queue_not_full!\n");
            break;
        }
        pool->pthreads = malloc(sizeof(pthread_t) * thread_num);
        if (NULL == pool->pthreads)
        {
            printf("failed to malloc pthreads!\n");
            break;
        }
        pool->queue_close = 0;
        pool->pool_close = 0;
        int i;
        for (i = 0; i < pool->thread_num; ++i)
        {
            pthread_create(&(pool->pthreads[i]), NULL, threadpool_function, (void *)pool);
        }
        
        return pool;    
    } while (0);
    
    return NULL;
}

int threadpool_add_job(struct threadpool* pool, void* (*callback_function)(void *arg), void *arg)
{
    assert(pool != NULL);
    assert(callback_function != NULL);
    assert(arg != NULL);

    pthread_mutex_lock(&(pool->mutex));
    while ((pool->queue_cur_num == pool->queue_max_num) && !(pool->queue_close || pool->pool_close))
    {
        pthread_cond_wait(&(pool->queue_not_full), &(pool->mutex));   //队列满的时候就等待
    }
    if (pool->queue_close || pool->pool_close)    //队列关闭或者线程池关闭就退出
    {
        pthread_mutex_unlock(&(pool->mutex));
        return -1;
    }
    struct job *pjob =(struct job*) malloc(sizeof(struct job));
    if (NULL == pjob)
    {
        pthread_mutex_unlock(&(pool->mutex));
        return -1;
    } 
    pjob->callback_function = callback_function;    
    pjob->arg = arg;
    pjob->next = NULL;
    if (pool->head == NULL)   
    {
        pool->head = pool->tail = pjob;
        pthread_cond_broadcast(&(pool->queue_not_empty));  //队列空的时候,有任务来时就通知线程池中的线程:队列非空
    }
    else
    {
        pool->tail->next = pjob;
        pool->tail = pjob;    
    }
    pool->queue_cur_num++;
    pthread_mutex_unlock(&(pool->mutex));
    return 0;
}

void* threadpool_function(void* arg)
{
    struct threadpool *pool = (struct threadpool*)arg;
    struct job *pjob = NULL;
    while (1)  //死循环
    {
        pthread_mutex_lock(&(pool->mutex));
        while ((pool->queue_cur_num == 0) && !pool->pool_close)   //队列为空时,就等待队列非空
        {
            pthread_cond_wait(&(pool->queue_not_empty), &(pool->mutex));
        }
        if (pool->pool_close)   //线程池关闭,线程就退出
        {
            pthread_mutex_unlock(&(pool->mutex));
            pthread_exit(NULL);
        }
        pool->queue_cur_num--;
        pjob = pool->head;
        if (pool->queue_cur_num == 0)
        {
            pool->head = pool->tail = NULL;
        }
        else 
        {
            pool->head = pjob->next;
        }
        if (pool->queue_cur_num == 0)
        {
            pthread_cond_signal(&(pool->queue_empty));        //队列为空,就可以通知threadpool_destroy函数,销毁线程函数
        }
        if (pool->queue_cur_num == pool->queue_max_num - 1)
        {
            pthread_cond_broadcast(&(pool->queue_not_full));  //队列非满,就可以通知threadpool_add_job函数,添加新任务
        }
        pthread_mutex_unlock(&(pool->mutex));
        
        (*(pjob->callback_function))(pjob->arg);   //线程真正要做的工作,回调函数的调用
        free(pjob);
        pjob = NULL;    
    }
}
int threadpool_destroy(struct threadpool *pool)
{
    assert(pool != NULL);
    pthread_mutex_lock(&(pool->mutex));
    if (pool->queue_close || pool->pool_close)   //线程池已经退出了,就直接返回
    {
        pthread_mutex_unlock(&(pool->mutex));
        return -1;
    }
    
    pool->queue_close = 1;        //置队列关闭标志
    while (pool->queue_cur_num != 0)
    {
        pthread_cond_wait(&(pool->queue_empty), &(pool->mutex));  //等待队列为空
    }    
    
    pool->pool_close = 1;      //置线程池关闭标志
    pthread_mutex_unlock(&(pool->mutex));
    pthread_cond_broadcast(&(pool->queue_not_empty));  //唤醒线程池中正在阻塞的线程
    pthread_cond_broadcast(&(pool->queue_not_full));   //唤醒添加任务的threadpool_add_job函数
    int i;
    for (i = 0; i < pool->thread_num; ++i)
    {
        pthread_join(pool->pthreads[i], NULL);    //等待线程池的所有线程执行完毕
    }
    
    pthread_mutex_destroy(&(pool->mutex));          //清理资源
    pthread_cond_destroy(&(pool->queue_empty));
    pthread_cond_destroy(&(pool->queue_not_empty));   
    pthread_cond_destroy(&(pool->queue_not_full));    
    free(pool->pthreads);
    struct job *p;
    while (pool->head != NULL)
    {
        p = pool->head;
        pool->head = p->next;
        free(p);
    }
    free(pool);
    return 0;
}

  测试文件main.c文件:

#include "threadpool.h"

void* work(void* arg)
{
    char *p = (char*) arg;
    printf("threadpool callback fuction : %s.\n", p);
    sleep(1);
}

int main(void)
{
    struct threadpool *pool = threadpool_init(10, 20);
    threadpool_add_job(pool, work, "1");
    threadpool_add_job(pool, work, "2");
    threadpool_add_job(pool, work, "3");
    threadpool_add_job(pool, work, "4");
    threadpool_add_job(pool, work, "5");
    threadpool_add_job(pool, work, "6");
    threadpool_add_job(pool, work, "7");
    threadpool_add_job(pool, work, "8");
    threadpool_add_job(pool, work, "9");
    threadpool_add_job(pool, work, "10");
    threadpool_add_job(pool, work, "11");
    threadpool_add_job(pool, work, "12");
    threadpool_add_job(pool, work, "13");
    threadpool_add_job(pool, work, "14");
    threadpool_add_job(pool, work, "15");
    threadpool_add_job(pool, work, "16");
    threadpool_add_job(pool, work, "17");
    threadpool_add_job(pool, work, "18");
    threadpool_add_job(pool, work, "19");
    threadpool_add_job(pool, work, "20");
    threadpool_add_job(pool, work, "21");
    threadpool_add_job(pool, work, "22");
    threadpool_add_job(pool, work, "23");
    threadpool_add_job(pool, work, "24");
    threadpool_add_job(pool, work, "25");
    threadpool_add_job(pool, work, "26");
    threadpool_add_job(pool, work, "27");
    threadpool_add_job(pool, work, "28");
    threadpool_add_job(pool, work, "29");
    threadpool_add_job(pool, work, "30");
    threadpool_add_job(pool, work, "31");
    threadpool_add_job(pool, work, "32");
    threadpool_add_job(pool, work, "33");
    threadpool_add_job(pool, work, "34");
    threadpool_add_job(pool, work, "35");
    threadpool_add_job(pool, work, "36");
    threadpool_add_job(pool, work, "37");
    threadpool_add_job(pool, work, "38");
    threadpool_add_job(pool, work, "39");
    threadpool_add_job(pool, work, "40");

    sleep(5);
    threadpool_destroy(pool);
    return 0;
}

  用gcc编译,运行就可以看到效果,1到40个回调函数分别被执行。

posted @ 2012-11-22 20:07  venow  阅读(37619)  评论(12编辑  收藏  举报