[What-Why-How] 线性回归预测

What

现有多个变量X1, X2, X3, ....会对结果数据Y产生影响,现在要求出这些变量Xn对于最终结果的影响权重。找到一个线(两个变量),面(三个变量)来拟合这些权重的数值。通过训练数据得到这些参数,然后使用这些参数(模型)对新数据进行预测
例如,拟合一个平面:

 

 其中 θ0表示预置的权重参数。

 

  • 误差

  真实值和预测值之间肯定是要存在差异的

  误差是独立并且具有相同分布,并且服从均值为0方差为θ2的高斯分布(正态分布)

  似然函数:,什么样的参数跟我们的数据组合后恰好时真实值。  样本数据 -> 参数,参数估计。最大似然函数,极大似然估计,让结果符合真实值的概率最大。

  对数似然:,似然函数的对数形式,便于计算。

 

  目标函数:,从对数似然化简得出,目标函数值越小似然函数值越大。对目标函数求偏导,在其偏导数为0点的,为极小值点:

 

 

  • 评估方法

  最常用的评估项:R2,其值越接近1认为结果约好。

 

 

  •  梯度下降

  得到一个目标函数后,如何进行求解。

  目标函数:,寻找山谷最低点,即函数终点

 

 

  如果有多个参数,是每个参数分布求极值,每次一小点,不断的更新参数

  梯度下降的方法:

    •   批量梯度下降  

      容易得到最优解,但每次要考虑所有样本,速度很慢

    •   随机梯度下降

      每次找一个样本,迭代速度快,但不一定每次朝着收敛的方向

    •    小批量梯度下降 batch  

      每次更新选择一小部分数据来计算,较实用

  不同步长(学习率)对结果会有大影响。一般要小一些,从小值开始,不行再小。批量的大小,在机器资源允许的情况下尽量大些。

 

Why

 

How

 

posted @ 2019-12-03 22:10  Jax.Li  阅读(248)  评论(0编辑  收藏  举报