【CF-1114D】Flood Fill 区间DP

Flood Fill

题意

有n个方块,每个方块都有一个颜色,现在玩一个游戏,开始时选择一个方块作为起点,

接下来每个回合都可以把起始点所在连通块变成任意一个颜色,问最少需要多少次,使

得所有方块颜色相同?

题解

对于区间\([l,r]\)最后肯定是变成\(l\)或者\(r\)的颜色,

\(dp[l][r][0/1]\)分别表示区间\([l,r]\)变为\(l/r\)的颜色所需的最少操作步骤。

\(dp[l][r][0]\)\(dp[l+1][r][0/1]\)转移,不从\(dp[l][r-1][0/1]\)转移

因为每次选择的都是起始点坐在的连通块,如果转移:区间\([l,r-1]\)要先

变成\(r\)的颜色,然后再变成\(l\)的颜色,这样就相当于是从\(dp[l+1][r][1]\)转移的。

\(dp[l][r][1]\)同理:从\(dp[l][r-1][0/1]\)转移。

代码

#include<bits/stdc++.h>
using namespace std;
const int N=5e3+10;
const int inf=0x3f3f3f3f;
typedef long long ll;

int dp[N][N][2],arr[N];
int main()
{
    int n;
    scanf("%d",&n);
    memset(dp,0x3f,sizeof(dp));
    for(int i=1; i<=n; ++i)
    {
        scanf("%d",&arr[i]);
        dp[i][i][0]=dp[i][i][1]=0;
    }
    for(int len=2; len<=n; len++)
    {
        for(int l=1; len+l-1<=n; l++)
        {
            int r=len+l-1;
            dp[l][r][0]=min(dp[l+1][r][0]+(arr[l+1]!=arr[l]),dp[l+1][r][1]+(arr[r]!=arr[l]));
            dp[l][r][1]=min(dp[l][r-1][0]+(arr[l]!=arr[r]),dp[l][r-1][1]+(arr[r-1]!=arr[r]));
        }
    }
    printf("%d\n",min(dp[1][n][0],dp[1][n][1]));
    return 0;
}
/*
*/
posted @ 2020-05-26 16:30  Valk3  阅读(131)  评论(0编辑  收藏  举报