\(x^n-1\)在实数域上的标准分解

由欧拉公式,\(x^n-1在复数域上的n个解为x_k=e^{i(\frac{2kΠ}{n})}\),k=0,1,2,.....,n-1

其中\(x_k=cos\frac{2kΠ}{n}+isin\frac{2kΠ}{n},k=0,1,2,.....,n-1\)

\(x^n-1\)在复数域上的标准分解为\(x^n-1=(x-x_0)(x-x_1).....(x-x_{n-1})\)

经观察,\((x-x_q)(x-x_{n-q})=x^2+1-2xcos\frac{2qΠ}{n}\),为实数域上的既约多项式

当n为奇数时,\(x_0=1,则x^n-1=(x-1)[x^2+1-2xcos\frac{2Π}{n}][x^2+1-2xcos\frac{4Π}{n}].....[x^2+1-2xcos\frac{(n-1)Π}{n}]\)

当n为偶数时,\(x_0=1,x_{n/2}=-1,则x^n-1=(x-1)(x+1)[x^2+1-2xcos\frac{2Π}{n}][x^2+1-2xcos\frac{4Π}{n}].....[x^2+1-2xcos\frac{(n-2)Π}{n}]\)

posted @ 2020-11-20 18:07  valar-morghulis  阅读(974)  评论(0编辑  收藏  举报