0/0型洛必达法则

在区间(a, b)上,f(x)和g(x)都可导、g(x) ≠ 0、limx → a+f(x) = limx → a+g(x) = 0,

$$\lim_{x \rightarrow a^{+}}\frac{f\left( x \right)}{g\left( x \right)} = \lim_{x \rightarrow a^{+}}\frac{f^{'}\left( x \right)}{g^{'}\left( x \right)}  $$

证明:设f(a)=g(a)=0,则有limx → a+f(x) = f(a) = 0、limx → a+g(x) = g(a) = 0,所以这个定义使得f(x)和g(x)在[a, b)上连续。取任意的x ∈ (ab),由于f(x)和g(x)在[a, x]上满足使用柯西中值定理的条件,所以有

$$\frac{f(x) - f(a)}{g\left( x \right) - g\left( a \right)} = \frac{f'(c)}{g^{'}\left( c \right)}$$

因为f(a)=g(a)=0,所以

$$\frac{f(x)}{g\left( x \right)} = \frac{f'(c)}{g^{'}\left( c \right)}$$

x → a+时,因为c在(a, x)上,所以c → a+,所以

$$\lim_{x \rightarrow a^{+}}\frac{f\left( x \right)}{g\left( x \right)} = \lim_{x \rightarrow a^{+}}\frac{f^{'}\left( c \right)}{g^{'}\left( c \right)} = \lim_{c \rightarrow a^{+}}\frac{f^{'}\left( c \right)}{g^{'}\left( c \right)} = \lim_{x \rightarrow a^{+}}\frac{f^{'}\left( x \right)}{g^{'}\left( x \right)}  $$

 

posted @ 2020-08-18 17:49  valar-morghulis  阅读(3655)  评论(0编辑  收藏  举报