[离散化][前缀和][DP][二分]JZOJ 5873 小p的属性
分析
我们可以离散化之后处理二维前缀和(用二分找到位置)
然后DP方程显而易见
#include <iostream> #include <cstdio> #include <algorithm> using namespace std; typedef long long ll; const int N=1e3+10; ll x[N],y[N],a[N][3]; ll s[N][N],f[N][N]; int n,m; int cnt,nx,ny; int Bin_Search(int val,bool ot) { int l=1,r=ot?ny:nx; while (l<=r) { int mid=l+r>>1; if (ot?y[mid]==val:x[mid]==val) return mid; if (ot?y[mid]<val:x[mid]<val) l=mid+1; else r=mid-1; } } int main() { freopen("growth.in","r",stdin); freopen("growth.out","w",stdout); scanf("%d%d",&n,&m); for (int i=1;i<=n;i++) { int a1,a2,a3; scanf("%d%d%d",&a1,&a2,&a3); if (a1+a2>m) continue; a[++cnt][0]=a1;a[cnt][1]=a2;a[cnt][2]=a3; x[cnt]=a1;y[cnt]=a2; } sort(x+1,x+cnt+1);sort(y+1,y+cnt+1); nx=unique(x+1,x+cnt+1)-x-1;ny=unique(y+1,y+cnt+1)-y-1; for (int i=1;i<=cnt;i++) s[Bin_Search(a[i][0],0)][Bin_Search(a[i][1],1)]+=a[i][2]; for (int i=1;i<=nx;i++) for (int j=1;j<=ny;j++) s[i][j]+=s[i-1][j]+s[i][j-1]-s[i-1][j-1]; for (int i=1;i<=nx;i++) for (int j=1;j<=ny;j++) f[i][j]=s[i][j]+max(f[i-1][j]+(x[i]-x[i-1]-1)*s[i-1][j],f[i][j-1]+(y[j]-y[j-1]-1)*s[i][j-1]); ll lans=0; for (int i=1;i<=nx;i++) for (int j=1;j<=ny;j++) lans=max(lans,f[i][j]+(m-x[i]-y[j])*s[i][j]); printf("%lld",lans); fclose(stdin);fclose(stdout); }
在日渐沉没的世界里,我发现了你。