[multiset][贪心]NOIP2018 TG T1 赛道修建

题目描述

C 城将要举办一系列的赛车比赛。在比赛前,需要在城内修建 m 条赛道。

C 城一共有 nn 个路口,这些路口编号为1,2,,n,有 n1 条适合于修建赛道的双向通行的道路,每条道路连接着两个路口。其中,第 i 条道路连接的两个路口编号为 ai 和 bi,该道路的长度为 li。借助这 n1 条道路,从任何一个路口出发都能到达其他所有的路口。

一条赛道是一组互不相同的道路 e1,e2,,ek,满足可以从某个路口出发,依次经过 道路 e1,e2,,ek(每条道路经过一次,不允许调头)到达另一个路口。一条赛道的长度等于经过的各道路的长度之和。为保证安全,要求每条道路至多被一条赛道经过。

目前赛道修建的方案尚未确定。你的任务是设计一种赛道修建的方案,使得修建的 mm 条赛道中长度最小的赛道长度最大(即 m 条赛道中最短赛道的长度尽可能大)

输入输出格式

输入格式:

 

输入文件第一行包含两个由空格分隔的正整数 n,m,分别表示路口数及需要修建的 赛道数。

接下来 n-1 行,第 ii 行包含三个正整数 ai,bi,li,表示第 i 条适合于修建赛道的道 路连接的两个路口编号及道路长度。保证任意两个路口均可通过这 n1 条道路相互到达。每行中相邻两数之间均由一个空格分隔。

 

输出格式:

 

输出共一行,包含一个整数,表示长度最小的赛道长度的最大值。

 

输入输出样例

输入样例#1:
7 1 
1 2 10 
1 3 5 
2 4 9 
2 5 8 
3 6 6 
3 7 7
输出样例#1:
31
输入样例#2: 
9 3 
1 2 6 
2 3 3 
3 4 5 
4 5 10 
6 2 4 
7 2 9 
8 4 7 
9 4 4
输出样例#2:
15

说明

【输入输出样例 1 说明】

所有路口及适合于修建赛道的道路如下图所示:

道路旁括号内的数字表示道路的编号,非括号内的数字表示道路长度。 需要修建 1 条赛道。可以修建经过第 3,1,2,6 条道路的赛道(从路口 4 到路口 7), 则该赛道的长度为 9 + 10 + 5 + 7 = 31,为所有方案中的最大值。

【输入输出样例 2 说明】

所有路口及适合于修建赛道的道路如下图所示:

需要修建 3条赛道。可以修建如下 3条赛道:

  1. 经过第 1,6条道路的赛道(从路口 1 到路口7),长度为 6 + 9 = 15
  2. 经过第5,2,3,8 条道路的赛道(从路口6 到路口 9),长度为 4 + 3 + 5 + 4 = 16
  3. 经过第 7,4 条道路的赛道(从路口 8 到路口5),长度为 7 + 10 = 17。 长度最小的赛道长度为 15,为所有方案中的最大值。

【数据规模与约定】

所有测试数据的范围和特点如下表所示 :

其中,“分支不超过 3”的含义为:每个路口至多有 3 条道路与其相连。 对于所有的数据, 2 ≤ n ≤ 50,000, 1 ≤ m ≤ n-1, 1ai,bin,1li10,000。

 

分析

其实这道题挺简单的(果然是我太菜了吗……)

二分长度应该都想得到,毕竟最小值最大,二分性不说了

首先我们可以证明,如果从i出发有两条链,它们的值大于等于length的话,那么合并它们必定不亏

为什么呢?因为这其中最多上传一条,也就是至多贡献1的答案,那么显然合并会更加优秀

那么我们可以用f[i]表示从i出发向下所得到未被占用的最长链,那么我们用multiset存所有能够上传到当前点的链,即f[son]+w[edge]

那么首先我们先将已经满足要求的挑出来,答案++

然后我们从小到大枚举链,用lowerbound找到最合适的链和它匹配掉,如果找不到合适的链,那么可以将这条链记录为f[i](反正链长在multiset里面是单调的)

然后记得清空multiset,还有multiset和储存不能和子节点一起进行,要遍历完子节点才能储存链(因为共用一个嘛)

 

#include <iostream>
#include <cstdio>
#include <set>
using namespace std;
const int N=5e4+10;
struct Edge {
    int u,v,w,nx;
}g[2*N];
int cnt,list[N];
int f[N];
multiset<int> t;
int n,m,lans,ans,length;

void Add(int u,int v,int w) {
    g[++cnt]=(Edge){u,v,w,list[u]};list[u]=cnt;
}

void DFS(int u,int fa) {
    for (int i=list[u];i;i=g[i].nx)
        if(g[i].v!=fa) DFS(g[i].v,u);
    for (int i=list[u];i;i=g[i].nx)
        if(g[i].v!=fa) t.insert(g[i].w+f[g[i].v]);
    while (!t.empty()) {
        int ed=*t.rbegin();
        if (ed>=length) lans++,t.erase(t.find(ed));
        else break;
    }
    f[u]=0;
    while (!t.empty()) {
        int bg=*t.begin();t.erase(t.begin());
        multiset<int>::iterator nx=t.lower_bound(length-bg);
        if (nx==t.end()) f[u]=bg;
        else t.erase(nx),lans++;
    }
    t.clear();
}

bool Check(int x) {
    lans=0;length=x;
    DFS(1,0);
    return lans>=m;
}

int main() {
    scanf("%d%d",&n,&m);
    int l=2147483647,r=0;
    for (int i=1,u,v,w;i<n;i++) scanf("%d%d%d",&u,&v,&w),Add(u,v,w),Add(v,u,w),l=min(l,w),r+=w;
    int mid;
    while (l<=r) {
        mid=l+r>>1;
        if (Check(mid)) ans=mid,l=mid+1;
        else r=mid-1;
    }
    printf("%d",ans);
}
View Code

 

posted @ 2018-12-03 21:39  Vagari  阅读(208)  评论(0编辑  收藏  举报