three.js cannon.js物理引擎制作一个保龄球游戏
关于cannon.js我们已经学习了一些知识,今天郭先生就使用已学的cannon.js物理引擎的知识配合three基础知识来做一个保龄球小游戏,效果如下图,在线案例请点击博客原文。
我们需要掌握的技能点,就是已经学过的cannon.js物理引擎知识、three.js车削几何体、threeBSP和简单的shaderMaterial。下面我们来详细的说一说如何制作这个游戏。
1. 设计游戏
因为我们已经使用过一些物理引擎,所以第一步我们很容易想到要用three做地面网格和墙面网格并为他们生成尺寸相当的刚体数据,这里面要求墙面和地面固定不动,所以刚体质量设为0。然后就是瓶子,瓶子我们可以直接下载模型,但是为了复习之前的知识,我选择使用车削几何体配合着色器来完成。瓶子的刚体我们暂时使用柱体来模拟(虽然和瓶子网格不匹配,但是在物理引擎中其实很少使用外形匹配的刚体,一是因为和实际的效果相差并不大,二是因为简单刚体的计算相对简单),车削几何体所需要的点我们可以通过画图或者ps来算出,让。但是cannon.js的Cylinder默认的up方向和three.js的CylinderGeometry的up方向是不同的,这里要注意。然后就是关于保龄球的设计思路,玩过保龄球的都知道,保龄球上面是有三个洞的(方便手指拿球),我们考虑使用ThreeBSP来绘制网格,相应的刚体我们使用球体即可。关于相机的控制,我们不使用控制器,在投球之前我们使用左右键来控制相机的左右移动,投球后我们让相机跟随球运动,在球发生相撞时,我们固定相机的位置。球的出射方向我们仍然使用鼠标指针控制(使用屏幕坐标转三维坐标),最后使用GUi来重置游戏即可,差不多就是这个思路,下面我们来看代码。
2. 游戏代码
代码比较简洁,有必要的我们在代码中标注。
1. 初始化刚体
initCannon() { //初始化物理世界 world = new CANNON.World(); world.gravity.set(0, -9.8, 0); world.broadphase = new CANNON.NaiveBroadphase(); world.solver.iterations = 10; //初始化地面刚体 let groundBody = new CANNON.Body({ mass: 0, shape: new CANNON.Box(new CANNON.Vec3(groundSize.x / 2, groundSize.y / 2, groundSize.z / 2)), position: new CANNON.Vec3(0, -groundSize.y / 2, 0), material: new CANNON.Material({friction: 1, restitution: 0}) }) world.addBody(groundBody); //初始化墙面刚体 let wallLeftBody = new CANNON.Body({ mass: 0, shape: new CANNON.Box(new CANNON.Vec3(wallSize.x / 2, wallSize.y / 2, wallSize.z / 2)), position: new CANNON.Vec3(-(wallSize.x + groundSize.x) / 2, wallSize.y / 2, 0), material: new CANNON.Material({friction: 0, restitution: 0}) }) world.addBody(wallLeftBody); let wallRightBody = new CANNON.Body({ mass: 0, shape: new CANNON.Box(new CANNON.Vec3(wallSize.x / 2, wallSize.y / 2, wallSize.z / 2)), position: new CANNON.Vec3((wallSize.x + groundSize.x) / 2, wallSize.y / 2, 0), material: new CANNON.Material({friction: 0, restitution: 0}) }) world.addBody(wallRightBody); //初始化保龄球刚体 sphereBody = new CANNON.Body({ mass: 50, shape: new CANNON.Sphere(sphereRadius), position: new CANNON.Vec3(0, sphereRadius, 400), material: new CANNON.Material({friction: 0.2, restitution: 0}) }) world.addBody(sphereBody); //初始化瓶子刚体 for(let i=0; i<pingPositionArray.length; i++) { let pingBody = new CANNON.Body({ mass: 1, shape: new CANNON.Cylinder(2.5,2.5,20,18), quaternion: new CANNON.Quaternion().setFromEuler(Math.PI / 2, 0, 0),//因为柱体的up方向和three的up方向相差90度,这里我们先旋转90度让圆柱体“站起来”。 position: new CANNON.Vec3(pingPositionArray[i][0],pingPositionArray[i][1],pingPositionArray[i][2]), material: new CANNON.Material({friction: 0.01, restitution: 1}) }) pingBodies.push(pingBody);//将瓶子刚体添加到刚体数组中,这样更容易计算 world.addBody(pingBody); } },
2. 初始化three.js
initThree() { //创建地面 this.initGround(); //创建墙体 this.initWall(); //创建瓶子 并引用 let pingMesh = this.createPing(); //pingPositionArray是瓶子位置数组 for(let i=0; i<pingPositionArray.length; i++) { let pingMeshCopy = pingMesh.clone(); pingMeshCopy.position.set(pingPositionArray[i][0],pingPositionArray[i][1],pingPositionArray[i][2]); pingMeshes.push(pingMeshCopy); scene.add(pingMeshCopy); } //创建保龄球并引用 sphereMesh = this.createSphere(); sphereMesh.position.set(0, sphereRadius, 400); sphereMesh.rotation.set(Math.PI / 6, 0, - Math.PI / 12); scene.add(sphereMesh); }, createPing() { let points = []; //latheArray是瓶子车削几何体所需点的数组 for(let i=0; i<latheArray.length; i++) { points.push(new THREE.Vector2(latheArray[i][0]/10, latheArray[i][1]/10)) } let geometry = new THREE.LatheGeometry(points, 30); geometry.computeVertexNormals(); //着色器材质 let material = new THREE.ShaderMaterial({ vertexShader: ` varying vec3 vPosition; varying vec3 vNormal; void main() { vNormal = normal; vPosition = position; gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); } `, fragmentShader: ` varying vec3 vPosition; varying vec3 vNormal; void main() { //光线向量 vec3 light = vec3(10.0, 10.0, 10.0); float strength = dot(light, vNormal) / length(light); float y = vPosition.y; //在 [3.1, 3.7]和[4.2, 4.8]之间被渲染成红色并根据光线向量和法向量模拟光照 if(y < 4.8 && y > 4.2 || y < 3.7 && y > 3.1) { gl_FragColor=vec4(1.0, 0.4 * pow(strength, 2.0), 0.4 * pow(strength, 2.0), 1.0); } else { gl_FragColor=vec4( 0.6 + 0.4 * pow(strength, 2.0), 0.6 + 0.4 * pow(strength, 2.0), 0.6 + 0.4 * pow(strength, 2.0), 1.0); } } `, side: THREE.DoubleSide }); let mesh = new THREE.Mesh(geometry, material); mesh.quaternion.copy(new THREE.Quaternion().setFromEuler(new THREE.Euler(-Math.PI / 2, 0, 0))); //这里将柱体网格添加到group中,为的是group的旋转 let group = new THREE.Group(); group.add(mesh); return group; }, createSphere() { let material = new THREE.MeshPhongMaterial({color: 0xEE100F, shininess: 60, specular: 0x2C85E1, side: THREE.DoubleSide}); let sphereGeometry = new THREE.SphereGeometry(sphereRadius, 40, 24); let cylinderGeometry = new THREE.CylinderGeometry(sphereRadius/10,sphereRadius/10,sphereRadius,30); let sphereMesh = new THREE.Mesh(sphereGeometry, material); let cMesh1 = new THREE.Mesh(cylinderGeometry, material); let cMesh2 = cMesh1.clone(); let cMesh3 = cMesh1.clone(); cMesh1.position.set(1.14, sphereRadius, 0.67); cMesh2.position.set(-1.14, sphereRadius, 0.67); cMesh3.position.set(0, sphereRadius, -1.33); //构造BSP let bsp1 = new ThreeBSP(sphereMesh); let bsp2 = new ThreeBSP(cMesh1); let bsp3 = new ThreeBSP(cMesh2); let bsp4 = new ThreeBSP(cMesh3); //用球形几何体,减去三个小的圆柱体 let resultBsp = bsp1.subtract(bsp2).subtract(bsp3).subtract(bsp4); let resultGeom = resultBsp.toGeometry();//这里我们只需要导出几何体 resultGeom.mergeVertices();//注意这两步,不然保龄球不会计算法向量,也就不会平滑着色 resultGeom.computeVertexNormals(); return new THREE.Mesh(resultGeom, material); }, initGround() { let texture = new THREE.TextureLoader().load('/static/images/base/ground.jpg'); texture.wrapS = texture.wrapT = THREE.RepeatWrapping; texture.repeat.set(1, 4); let geometry = new THREE.BoxBufferGeometry(groundSize.x, groundSize.y, groundSize.z); let material = new THREE.MeshPhongMaterial({map: texture}); let mesh = new THREE.Mesh(geometry, material); mesh.position.y = -groundSize.y / 2; scene.add(mesh); }, initWall() { let material = new THREE.MeshLambertMaterial({color: 0x77dddd}); let geometry = new THREE.BoxBufferGeometry(wallSize.x, wallSize.y, wallSize.z); let leftMesh = new THREE.Mesh(geometry, material); let rightMesh = leftMesh.clone(); leftMesh.position.set(-(wallSize.x + groundSize.x) / 2, wallSize.y / 2, 0); rightMesh.position.set((wallSize.x + groundSize.x) / 2, wallSize.y / 2, 0); scene.add(leftMesh); scene.add(rightMesh); },
3. 定义事件
这里我们需要鼠标mousemove事件和onkeydown,onkeyup事件
document.onkeydown = this.handler; document.onkeyup = this.handler; this.$refs.box.addEventListener('mousemove', event => { //鼠标移动,屏幕二维向量转三维向量 let x = (event.clientX / window.innerWidth) * 2 - 1; let y = - (event.clientY / window.innerHeight) * 2 + 1; direction = new THREE.Vector3(x,y,-1).applyQuaternion(camera.getWorldQuaternion(new THREE.Quaternion())).normalize(); }) handler(event) { var down = (event.type == 'keydown'); switch(event.keyCode){ case 32: { if(down && time > event.timeStamp) { time = event.timeStamp;//time默认值为Infinity,第一次按下空格,给time赋值 } else if(down) { relaxation = event.timeStamp - time;//持续按下,计算累积时间 } else { //根据持续时间给球初始化速度 let t = relaxation > 5000 ? 500 : relaxation / 10; sphereBody.velocity.set(direction.x * t, direction.y * t, direction.z * t); sphereBody.angularVelocity.set(-1,0,0); time = Infinity; } } break; case 37: camera.position.x --; sphereBody.position.x --; break; case 39: camera.position.x ++; sphereBody.position.x ++; break; } },
主要代码大致就是这样,下一节还会继续cannon.js的学习。
转载请注明地址:郭先生的博客