视频分析

在rdshare/detection目录下,通过detection_reuse_control.sh脚本调用detection_reuse.py文件

detection_reuse_control.sh中的内容为

#!/bin/bash


#调用detection_bash,此版本为复用的版本,即需要存数据库,查数据库操作
for i in $(seq 370000 370001)
do 
    python detection_reuse.py --frame_num $i 
done
View Code

首先记录一下detection_reuse.py原有的内容,然后进行修改

#!usr/bin/python
# -*- coding: utf-8 -*-

import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot 
from matplotlib import pyplot as plt
import os
import tensorflow as tf
from PIL import Image
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util

import datetime
# 关闭tensorflow警告
import time
import MySQLdb
import argparse
import sys
reload(sys)
sys.setdefaultencoding('utf8')

os.environ['TF_CPP_MIN_LOG_LEVEL']='3'

detection_graph = tf.Graph()


# 插入数据,主要针对ssd_inception这一列
def accuracy_test(frame_num, list):
    print list
    conn =MySQLdb.connect(user='root',passwd='TJU55b425',host='localhost',port=3306,db='rdshare',charset='utf8')
    cursor = conn.cursor()

    sql="INSERT INTO captain_america3_sd (is_detected, frame_num, ssd_inception) VALUES (1,'%s','%s')"%(frame_num, MySQLdb.escape_string(str(list)));

    cursor.execute(sql)

    sql="SELECT is_detected FROM captain_america3_sd WHERE frame_num ='%s' "% (frame_num);
    cursor.execute(sql)

    cursor.rowcount
    conn.commit()
    cursor.close()



# 加载模型数据-------------------------------------------------------------------------------------------------------
def loading(model_name):

    with detection_graph.as_default():
        od_graph_def = tf.GraphDef()
        PATH_TO_CKPT = '/home/yanjieliu/models/models/research/object_detection/pretrained_models/'+model_name + '/frozen_inference_graph.pb'
        with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
            serialized_graph = fid.read()
            od_graph_def.ParseFromString(serialized_graph)
            tf.import_graph_def(od_graph_def, name='')
    return detection_graph



# Detection检测-------------------------------------------------------------------------------------------------------
def load_image_into_numpy_array(image):
    (im_width, im_height) = image.size
    return np.array(image.getdata()).reshape(
        (im_height, im_width, 3)).astype(np.uint8)
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('/home/yanjieliu/models/models/research/object_detection/data', 'mscoco_label_map.pbtxt')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=90, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

def Detection(args, frame_num):
    image_path=args.image_path
    loading(args.model_name)
    #start = time.time()
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph) as sess:
            # for image_path in TEST_IMAGE_PATHS:
            image = Image.open('%simage-%s.jpeg'%(image_path, frame_num))

            # the array based representation of the image will be used later in order to prepare the
            # result image with boxes and labels on it.
            image_np = load_image_into_numpy_array(image)

            # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
            image_np_expanded = np.expand_dims(image_np, axis=0)
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

            # Each box represents a part of the image where a particular object was detected.
            boxes = detection_graph.get_tensor_by_name('detection_boxes:0')

            # Each score represent how level of confidence for each of the objects.
            # Score is shown on the result image, together with the class label.
            scores = detection_graph.get_tensor_by_name('detection_scores:0')
            classes = detection_graph.get_tensor_by_name('detection_classes:0')
            num_detections = detection_graph.get_tensor_by_name('num_detections:0')

            # Actual detection.
            (boxes, scores, classes, num_detections) = sess.run(
                [boxes, scores, classes, num_detections],
                feed_dict={image_tensor: image_np_expanded})

            # Visualization of the results of a detection.将识别结果标记在图片上
            vis_util.visualize_boxes_and_labels_on_image_array(
                 image_np,
                 np.squeeze(boxes),
                 np.squeeze(classes).astype(np.int32),
                 np.squeeze(scores),
                 category_index,
                 use_normalized_coordinates=True,
                 line_thickness=8)
            # output result输出
            list = []
            for i in range(3):
                if classes[0][i] in category_index.keys():
                    class_name = category_index[classes[0][i]]['name']
                    #detection_to_database(class_name, frame_num)
                else:
                    class_name = 'N/A'
                print("object:%s confidence:%s" % (class_name, scores[0][i]))
                #print(boxes)
                if(float(scores[0][i])>0.5):
                    list.append(class_name.encode('utf-8'))

            accuracy_test(frame_num, list)
            #accuracy_test_frcnn(frame_num, list)
                
                
            # matplotlib输出图片
            # Size, in inches, of the output images.
            IMAGE_SIZE = (20, 12)
            plt.figure(figsize=IMAGE_SIZE)
            plt.imshow(image_np)
            plt.show()
            plt.close('all')

def parse_args():
    '''parse args'''
    parser = argparse.ArgumentParser()
    parser.add_argument('--image_path', default='/home/yanjieliu/my_opt/data_for_yolo/CAall/')
    parser.add_argument('--frame_num', default='370272')
    parser.add_argument('--model_name',
                        default='ssd_inception_v2_coco_2018_01_28')
    return parser.parse_args()



if __name__ == '__main__':
# 运行
    args=parse_args()
    start = time.time()
    #frame_num=int(36000)
    Detection(args, args.frame_num)
    end = time.time()
    print('time:\n')
    print str(end-start)




#将时间写入到文件,方便统计
#    with open('./outputs/1to10test_outputs.txt', 'a') as f:
#        f.write('\n')
#        f.write(str(end-start))
View Code

检测相似度原代码

#!/usr/bin/python
# -*- coding: utf-8 -*-

import Image
import datetime
import time
import argparse

def make_regalur_image(img, size = (256, 256)):
    return img.resize(size).convert('RGB')

def split_image(img, part_size = (64, 64)):
    w, h = img.size
    pw, ph = part_size
    
    assert w % pw == h % ph == 0
    
    return [img.crop((i, j, i+pw, j+ph)).copy() \
                for i in xrange(0, w, pw) \
                for j in xrange(0, h, ph)]

def hist_similar(lh, rh):
    assert len(lh) == len(rh)
    return sum(1 - (0 if l == r else float(abs(l - r))/max(l, r)) for l, r in zip(lh, rh))/len(lh)

def calc_similar(li, ri):
#    return hist_similar(li.histogram(), ri.histogram())
    return sum(hist_similar(l.histogram(), r.histogram()) for l, r in zip(split_image(li), split_image(ri))) / 16.0
            

def calc_similar_by_path(lf, rf):
    li, ri = make_regalur_image(Image.open(lf)), make_regalur_image(Image.open(rf))
    return calc_similar(li, ri)

def make_doc_data(lf, rf):
    li, ri = make_regalur_image(Image.open(lf)), make_regalur_image(Image.open(rf))
    li.save(lf + '_regalur.png')
    ri.save(rf + '_regalur.png')
    fd = open('stat.csv', 'w')
    fd.write('\n'.join(l + ',' + r for l, r in zip(map(str, li.histogram()), map(str, ri.histogram()))))
#    print >>fd, '\n'
#    fd.write(','.join(map(str, ri.histogram())))
    fd.close()
    import ImageDraw
    li = li.convert('RGB')
    draw = ImageDraw.Draw(li)
    for i in xrange(0, 256, 64):
        draw.line((0, i, 256, i), fill = '#ff0000')
        draw.line((i, 0, i, 256), fill = '#ff0000')
    li.save(lf + '_lines.png')

def parse_args():
    '''parse args'''
    parser = argparse.ArgumentParser()
    parser.add_argument('--image_path', default='/home/yanjieliu/my_opt/data_for_yolo/CAall/')
    parser.add_argument('--frame_num', default='370001')
    return parser.parse_args()    

if __name__ == '__main__':
    #path = r'test/TEST%d/%d.JPG'
    args=parse_args()
    print('%simage-%s.jpeg'%(args.image_path, args.frame_num))
    start = time.time()
    #for i in xrange(1, 2):
    #    print 'test_case_%d: %.3f%%'%(i, \
    #        calc_similar_by_path('test/TEST%d/%d.JPG'%(i, 1), 'test/TEST%d/%d.JPG'%(i, 2))*100)
    print 'test_case: %.3f'%( \
        calc_similar_by_path('%simage-%d.jpeg'%(args.image_path, int(args.frame_num)-1), '%simage-%s.jpeg'%(args.image_path, args.frame_num)))
    endtime = time.time()
    print('time:\n')
    print str(endtime-start)
#    make_doc_data('test/TEST4/1.JPG', 'test/TEST4/2.JPG')
View Code

通过 (time python histsimilar.py) >& logfile 代码运行脚本并将结果存入logfile文件

第一次修改,将识别结果(物体,识别框)存入数据库

#!usr/bin/python
# -*- coding: utf-8 -*-

import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot 
from matplotlib import pyplot as plt
import os
import tensorflow as tf
from PIL import Image
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util

import datetime
# 关闭tensorflow警告
import time
import MySQLdb
import argparse
import sys
reload(sys)
sys.setdefaultencoding('utf8')

os.environ['TF_CPP_MIN_LOG_LEVEL']='3'

detection_graph = tf.Graph()

def todatabase(frame_num, list, boxes):
    conn=MySQLdb.connect(user='aiya',passwd='wWpPtKkp86CjfYit',host='47.93.20.233',port=3306,db='aiya',charset='utf8')
    cursor = conn.cursor()

    sql="INSERT INTO ca3_yolo (frame_no, objects, json_yolo) VALUES ('%d','%s','%s')"%(int(frame_num), MySQLdb.escape_string(str(list)),MySQLdb.escape_string(str(boxes)));

    cursor.execute(sql)

    #sql="SELECT is_detected FROM captain_america3_sd WHERE frame_num ='%s' "% (frame_num);
    #cursor.execute(sql)

    cursor.rowcount
    conn.commit()
    cursor.close()


# 插入数据,主要针对ssd_inception这一列
def accuracy_test(frame_num, list):
    print list
    conn =MySQLdb.connect(user='root',passwd='TJU55b425',host='localhost',port=3306,db='rdshare',charset='utf8')
    cursor = conn.cursor()

    sql="INSERT INTO captain_america3_sd (is_detected, frame_num, ssd_inception) VALUES (1,'%s','%s')"%(frame_num, MySQLdb.escape_string(str(list)));

    cursor.execute(sql)

    sql="SELECT is_detected FROM captain_america3_sd WHERE frame_num ='%s' "% (frame_num);
    cursor.execute(sql)

    cursor.rowcount
    conn.commit()
    cursor.close()



# 加载模型数据-------------------------------------------------------------------------------------------------------
def loading(model_name):

    with detection_graph.as_default():
        od_graph_def = tf.GraphDef()
        PATH_TO_CKPT = '/home/yanjieliu/models/models/research/object_detection/pretrained_models/'+model_name + '/frozen_inference_graph.pb'
        with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
            serialized_graph = fid.read()
            od_graph_def.ParseFromString(serialized_graph)
            tf.import_graph_def(od_graph_def, name='')
    return detection_graph



# Detection检测-------------------------------------------------------------------------------------------------------
def load_image_into_numpy_array(image):
    (im_width, im_height) = image.size
    return np.array(image.getdata()).reshape(
        (im_height, im_width, 3)).astype(np.uint8)
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('/home/yanjieliu/models/models/research/object_detection/data', 'mscoco_label_map.pbtxt')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=90, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

def Detection(args, frame_num):
    image_path=args.image_path
    loading(args.model_name)
    #start = time.time()
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph) as sess:
            # for image_path in TEST_IMAGE_PATHS:
            image = Image.open('%simage-%s.jpeg'%(image_path, frame_num))

            # the array based representation of the image will be used later in order to prepare the
            # result image with boxes and labels on it.
            image_np = load_image_into_numpy_array(image)

            # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
            image_np_expanded = np.expand_dims(image_np, axis=0)
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

            # Each box represents a part of the image where a particular object was detected.
            boxes = detection_graph.get_tensor_by_name('detection_boxes:0')

            # Each score represent how level of confidence for each of the objects.
            # Score is shown on the result image, together with the class label.
            scores = detection_graph.get_tensor_by_name('detection_scores:0')
            classes = detection_graph.get_tensor_by_name('detection_classes:0')
            num_detections = detection_graph.get_tensor_by_name('num_detections:0')

            # Actual detection.
            (boxes, scores, classes, num_detections) = sess.run(
                [boxes, scores, classes, num_detections],
                feed_dict={image_tensor: image_np_expanded})

            # Visualization of the results of a detection.将识别结果标记在图片上
            vis_util.visualize_boxes_and_labels_on_image_array(
                 image_np,
                 np.squeeze(boxes),
                 np.squeeze(classes).astype(np.int32),
                 np.squeeze(scores),
                 category_index,
                 use_normalized_coordinates=True,
                 line_thickness=8)
            # output result输出
            list = []
            for i in range(3):
                if classes[0][i] in category_index.keys():
                    class_name = category_index[classes[0][i]]['name']
                    #detection_to_database(class_name, frame_num)
                else:
                    class_name = 'N/A'
                print("object:%s confidence:%s" % (class_name, scores[0][i]))
                #print(boxes)
                if(float(scores[0][i])>0.5):
                    list.append(class_name.encode('utf-8'))
            todatabase(frame_num, list, boxes)
            #accuracy_test(frame_num, list)
            #accuracy_test_frcnn(frame_num, list)
                
                
            # matplotlib输出图片
            # Size, in inches, of the output images.
            IMAGE_SIZE = (20, 12)
            plt.figure(figsize=IMAGE_SIZE)
            plt.imshow(image_np)
            plt.show()
            plt.close('all')

def parse_args():
    '''parse args'''
    parser = argparse.ArgumentParser()
    parser.add_argument('--image_path', default='/home/yanjieliu/my_opt/data_for_yolo/CAall/')
    parser.add_argument('--frame_num', default='370272')
    parser.add_argument('--model_name',
                        default='ssd_inception_v2_coco_2018_01_28')
    return parser.parse_args()



if __name__ == '__main__':
# 运行
    args=parse_args()
    start = time.time()
    #frame_num=int(36000)
    Detection(args, args.frame_num)
    end = time.time()
    print('time:\n')
    print str(end-start)




#将时间写入到文件,方便统计
#    with open('./outputs/1to10test_outputs.txt', 'a') as f:
#        f.write('\n')
#        f.write(str(end-start))
View Code

 存入的数据为美队3中从370000帧到371000帧

然后修改差异检测代码,更新difference_score值

#!/usr/bin/python
# -*- coding: utf-8 -*-

import Image
import datetime
import time
import argparse
import MySQLdb

def ds_to_database(difference_score, frame_num):
    #将difference_score存入数据库
    conn=MySQLdb.connect(user='aiya',passwd='wWpPtKkp86CjfYit',host='47.93.20.233',port=3306,db='aiya',charset='utf8')
    cursor = conn.cursor()

    sql="UPDATE ca3_yolo SET  difference_score =%f WHERE frame_no = %d " %(float(difference_score), int(frame_num));

    cursor.execute(sql)

    #sql="SELECT is_detected FROM captain_america3_sd WHERE frame_num ='%s' "% (frame_num);
    #cursor.execute(sql)

    cursor.rowcount
    conn.commit()
    cursor.close()


def make_regalur_image(img, size = (256, 256)):
    return img.resize(size).convert('RGB')

def split_image(img, part_size = (64, 64)):
    w, h = img.size
    pw, ph = part_size
    
    assert w % pw == h % ph == 0
    
    return [img.crop((i, j, i+pw, j+ph)).copy() \
                for i in xrange(0, w, pw) \
                for j in xrange(0, h, ph)]

def hist_similar(lh, rh):
    assert len(lh) == len(rh)
    return sum(1 - (0 if l == r else float(abs(l - r))/max(l, r)) for l, r in zip(lh, rh))/len(lh)

def calc_similar(li, ri):
#    return hist_similar(li.histogram(), ri.histogram())
    return sum(hist_similar(l.histogram(), r.histogram()) for l, r in zip(split_image(li), split_image(ri))) / 16.0
            

def calc_similar_by_path(lf, rf, frame_num):
    li, ri = make_regalur_image(Image.open(lf)), make_regalur_image(Image.open(rf))
    difference_score = calc_similar(li, ri)
    ds_to_database(difference_score, frame_num)
    return difference_score

def make_doc_data(lf, rf):
    li, ri = make_regalur_image(Image.open(lf)), make_regalur_image(Image.open(rf))
    li.save(lf + '_regalur.png')
    ri.save(rf + '_regalur.png')
    fd = open('stat.csv', 'w')
    fd.write('\n'.join(l + ',' + r for l, r in zip(map(str, li.histogram()), map(str, ri.histogram()))))
#    print >>fd, '\n'
#    fd.write(','.join(map(str, ri.histogram())))
    fd.close()
    import ImageDraw
    li = li.convert('RGB')
    draw = ImageDraw.Draw(li)
    for i in xrange(0, 256, 64):
        draw.line((0, i, 256, i), fill = '#ff0000')
        draw.line((i, 0, i, 256), fill = '#ff0000')
    li.save(lf + '_lines.png')

def parse_args():
    '''parse args'''
    parser = argparse.ArgumentParser()
    parser.add_argument('--image_path', default='/home/yanjieliu/my_opt/data_for_yolo/CAall/')
    parser.add_argument('--frame_num', default='370001')
    return parser.parse_args()    

if __name__ == '__main__':
    #path = r'test/TEST%d/%d.JPG'
    args=parse_args()
    print('%simage-%s.jpeg'%(args.image_path, args.frame_num))
    start = time.time()
    for i in xrange(int(args.frame_num)+1, int(args.frame_num)+1000):
        print 'test_case: %.3f'%( \
            calc_similar_by_path('%simage-%d.jpeg'%(args.image_path, i-1), '%simage-%s.jpeg'%(args.image_path, i), i))
    #print 'test_case: %.3f'%( \
    #    calc_similar_by_path('%simage-%d.jpeg'%(args.image_path, int(args.frame_num)-1), '%simage-%s.jpeg'%(args.image_path, args.frame_num), args.frame_num))
    endtime = time.time()
    print('time:\n')
    print str(endtime-start)
#    make_doc_data('test/TEST4/1.JPG', 'test/TEST4/2.JPG')
View Code

检测1000帧的差异度,用时293.609838009。。

posted @ 2019-03-21 02:24  JarvisLau  阅读(303)  评论(0编辑  收藏  举报