利用PCA降维
参考:《机器学习实战》- Machine Learning in Action
一、 基本思想
PCA(Principal Component Analysis),主成分分析。是目前应用最为广泛的降维技术。
什么是降维?举个例子:假设我们正通过电视观看体育比赛,显示器大概包含了100万像素,而球则可能是由较少的像素组成的,比如一千个像素。大部分体育比赛中,我们关注的是给定时刻球的位置。这个过程,人们就已经将数据从一百万维降低到了三维。
考虑下图的大量数据点,如果要我们画一条直线,这条线要尽量可能覆盖这些点,很明显是直线B。
现在,我们将坐标轴旋转,使得X轴平行于B直线,接下来是进行降维操作,结果如下:
我们来分析下大致的流程:第一个主成分是从数据差异性最大的方向提取出来的,第二个主成分则来自于数据差异性次大的方向,并且该方向与第一个主成分方向正交。而通过数据集的协方差矩阵及其特征值分析,我们就可以求得这些主成分的值。
大致流程如下:
- 去除平均值
- 计算协方差矩阵
- 计算协方差矩阵的特征值和特征向量
- 将特征值从大到小排序
- 保留最上面的N个特征向量
- 将数据转换到上述N个特征向量构建的新空间
二、 代码
# -*- coding:utf8 -*-
from numpy import *
def loadDataSet(fileName, delim='\t'):
fr = open(fileName)
stringArr = [line.strip().split(delim) for line in fr.readlines()]
dataArr = [map(float, line) for line in stringArr]
return mat(dataArr)
def pca(dataMat, topNfeet=9999999):
meanVals = mean(dataMat, axis=0)
meanRemoved = dataMat - meanVals
covMat = cov(meanRemoved, rowvar=0)
eigVals, eigVects = linalg.eig(mat(covMat))
eigValInd = argsort(eigVals)
eigValInd = eigValInd[:-(topNfeet+1):-1]
redEigVects = eigVects[:,eigValInd]
lowDDataMat = meanRemoved * redEigVects
reconMat = (lowDDataMat * redEigVects.T) + meanVals
return lowDDataMat, reconMat
作者: vachester
出处:http://www.cnblogs.com/vachester/
邮箱:xcchester@gmail.com
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接,否则保留追究法律责任的权利。