Spark scala使用na.replace替换DataFrame中的字符串
创建DataFrameF示例
val df = sc.parallelize(Seq( | (0,"cat26","cat26"), | (1,"cat67","cat26"), | (2,"cat56","cat26"), | (3,"cat8","cat26"))).toDF("Hour", "Category", "Value")
方法一:
scala> df.na.replace("*", Map[Any, Any]( | "cat26" -> "cat23" | )).show() +----+--------+-----+ |Hour|Category|Value| +----+--------+-----+ | 0| cat23|cat23| | 1| cat67|cat23| | 2| cat56|cat23| | 3| cat8|cat23| +----+--------+-----+
spark官方源码示例:org/apache/spark/sql/DataFrameNaFunctionsSuite.scala
name是列名
df.na.replace("name", Map( "Bob" -> "Bravo", "Alice" -> null )) df.na.replace("*", Map[Any, Any]( false -> null ))
方法二:
替换hour列中的0为9
import com.google.common.collect.ImmutableMap; scala> df.na.replace("hour", ImmutableMap.of(0, 9)).show() +----+--------+-----+ |Hour|Category|Value| +----+--------+-----+ | 9| cat26|cat26| | 1| cat67|cat26| | 2| cat56|cat26| | 3| cat8|cat26| +----+--------+-----+ 替换所有列中"cat26"为"cat222" scala> df.na.replace("*", ImmutableMap.of("cat26", "cat222")).show() +----+--------+------+ |Hour|Category| Value| +----+--------+------+ | 0| cat222|cat222| | 1| cat67|cat222| | 2| cat56|cat222| | 3| cat8|cat222| +----+--------+------+
spark官方源码示例:
org/apache/spark/sql/DataFrameNaFunctions.scala * {{{ * import com.google.common.collect.ImmutableMap; * * // Replaces all occurrences of 1.0 with 2.0 in column "height". * df.na.replace("height", ImmutableMap.of(1.0, 2.0)); * * // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name". * df.na.replace("name", ImmutableMap.of("UNKNOWN", "unnamed")); * * // Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns. * df.na.replace("*", ImmutableMap.of("UNKNOWN", "unnamed")); * }}}