Spark Dataframe Scala选择部分列

复制代码
一,创建Dataframe
scala> val df = sc.parallelize(Seq(
     |      |   (0,"cat26",30.9),
     |      |   (1,"cat67",28.5),
     |      |   (2,"cat56",39.6),
     |      |   (3,"cat8",35.6))).toDF("Hour", "Category", "Value")
df: org.apache.spark.sql.DataFrame = [Hour: int, Category: string ... 1 more field]

scala> df.show()
+----+--------+-----+
|Hour|Category|Value|
+----+--------+-----+
|   0|   cat26| 30.9|
|   1|   cat67| 28.5|
|   2|   cat56| 39.6|
|   3|    cat8| 35.6|
+----+--------+-----+

二,方法1:(!号是取反)
scala> var df1 =  df.select(df.columns.filter(x => !x.contains("Val")).map(df(_)) : _*)
df1: org.apache.spark.sql.DataFrame = [Hour: int, Category: string]
scala> df1.show()
+----+--------+
|Hour|Category|
+----+--------+
|   0|   cat26|
|   1|   cat67|
|   2|   cat56|
|   3|    cat8|
+----+--------+

三,方法2:
scala> val regex = """^((?!Va).)*$""".r
regex: scala.util.matching.Regex = ^((?!Va).)*$

scala> val selection = df.columns.filter(s => regex.findFirstIn(s).isDefined)
selection: Array[String] = Array(Hour, Category)

scala> var newdf = df.select(selection.head, selection.tail : _*)
newdf: org.apache.spark.sql.DataFrame = [Hour: int, Category: string]

scala> newdf.show()
+----+--------+
|Hour|Category|
+----+--------+
|   0|   cat26|
|   1|   cat67|
|   2|   cat56|
|   3|    cat8|
+----+--------+

正则表达式这块没怎么研究,可参考:
https://www.runoob.com/scala/scala-regular-expressions.html
https://stackoverflow.com/questions/59065137/select-columns-in-spark-dataframe-based-on-column-name-pattern
复制代码
posted @   船长博客  阅读(306)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)
永远相信美好的事情即将发生!
点击右上角即可分享
微信分享提示