洛谷 P1113 杂务
题目描述
John
的农场在给奶牛挤奶前有很多杂务要完成,每一项杂务都需要一定的时间来完成它。比如:他们要将奶牛集合起来,将他们赶进牛棚,为奶牛清洗乳房以及一些其它工作。尽早将所有杂务完成是必要的,因为这样才有更多时间挤出更多的牛奶。当然,有些杂务必须在另一些杂务完成的情况下才能进行。比如:只有将奶牛赶进牛棚才能开始为它清洗乳房,还有在未给奶牛清洗乳房之前不能挤奶。我们把这些工作称为完成本项工作的准备工作。至少有一项杂务不要求有准备工作,这个可以最早着手完成的工作,标记为杂务 11 。John
有需要完成的 nn 个杂务的清单,并且这份清单是有一定顺序的,杂务 k(k>1)k(k>1) 的准备工作只可能在杂务 11 至 k-1k−1 中。
写一个程序从 11 到 nn 读入每个杂务的工作说明。计算出所有杂务都被完成的最短时间。当然互相没有关系的杂务可以同时工作,并且,你可以假定John
的农场有足够多的工人来同时完成任意多项任务。
输入输出格式
输入格式:
第1行:一个整数 nn ,必须完成的杂务的数目( 3 \le n \le 10,0003≤n≤10,000 );
第 22 至 (n+1)(n+1) 行: 共有 nn 行,每行有一些用 11 个空格隔开的整数,分别表示:
* 工作序号( 11 至 nn ,在输入文件中是有序的);
* 完成工作所需要的时间 len(1 \le len \le 100)len(1≤len≤100) ;
* 一些必须完成的准备工作,总数不超过 100100 个,由一个数字 00 结束。有些杂务没有需要准备的工作只描述一个单独的 00 ,整个输入文件中不会出现多余的空格。
输出格式:
一个整数,表示完成所有杂务所需的最短时间。
输入输出样例
输入样例#1: 复制
7 1 5 0 2 2 1 0 3 3 2 0 4 6 1 0 5 1 2 4 0 6 8 2 4 0 7 4 3 5 6 0
输出样例#1: 复制
23
思路:拓扑排序/递推 (我用的后者)
#include<algorithm> #include<cstdio> using namespace std; int n, t, cot; int s[10005]; int ans, tmp; int main() { scanf("%d", &n); for(int i = 1; i <= n; i++) { scanf("%d%d", &tmp, &cot); int pre = 0; while(1) { scanf("%d", &t); if(!t) break; pre = max(s[t], pre); } s[i] = pre + cot; ans = max(ans, s[i]); } printf("%d", ans); return 0; }