并发编程之锁、进程池、线程池等相关内容-39
from threading import Thread
from multiprocessing import Process
def task():
while True:
pass
if __name__ == '__main__':
for i in range(6):
# t=Thread(target=task) # 因为有GIL锁,同一时刻,只有一条线程执行,所以cpu不会满
t = Process(target=task) # 由于是多进程,进程中的线程会被cpu调度执行,6个cpu全在工作,就会跑满
t.start()
2.GIL锁和普通互斥锁
from threading import Thread, Lock
import time
mutex = Lock()
money = 100
def task():
global money
mutex.acquire()
temp = money
time.sleep(1)
money = temp - 1
mutex.release()
if __name__ == '__main__':
ll = []
for i in range(10):
t = Thread(target=task)
t.start()
# t.join() # 会怎么样?变成了串行,不能这么做
ll.append(t)
for t in ll:
t.join()
print(money)
3.IO密集型和计算密集型
'''
-----以下只针对于cpython解释器
-在单核情况下:
-开多线程还是开多进程?不管干什么都是开线程
-在多核情况下:
-如果是计算密集型,需要开进程,能被多个cpu调度执行
-如果是io密集型,需要开线程,cpu遇到io会切换到其他线程执行
'''
from threading import Thread
from multiprocessing import Process
import time
# 计算密集型
# def task():
# count = 0
# for i in range(100000000):
# count += i
#
#
# if __name__ == '__main__':
# ctime = time.time()
# ll = []
# for i in range(10):
# t = Thread(target=task) # 开线程:42.68658709526062
# # t = Process(target=task) # 开进程:9.04949426651001
# t.start()
# ll.append(t)
#
# for t in ll:
# t.join()
# print(time.time()-ctime)
## io密集型
def task():
time.sleep(2)
if __name__ == '__main__':
ctime = time.time()
ll = []
for i in range(400):
t = Thread(target=task) # 开线程:2.0559656620025635
# t = Process(target=task) # 开进程:9.506720781326294
t.start()
ll.append(t)
for t in ll:
t.join()
print(time.time() - ctime)
4.死锁现象
# 死锁现象,张三拿到了A锁,等B锁,李四拿到了B锁,等A锁
from threading import Thread, Lock
import time
mutexA = Lock()
mutexB = Lock()
def eat_apple(name):
mutexA.acquire()
print('%s 获取到了a锁' % name)
mutexB.acquire()
print('%s 获取到了b锁' % name)
print('开始吃苹果,并且吃完了')
mutexB.release()
print('%s 释放了b锁' % name)
mutexA.release()
print('%s 释放了a锁' % name)
def eat_egg(name):
mutexB.acquire()
print('%s 获取到了b锁' % name)
time.sleep(2)
mutexA.acquire()
print('%s 获取到了a锁' % name)
print('开始吃鸡蛋,并且吃完了')
mutexA.release()
print('%s 释放了a锁' % name)
mutexB.release()
print('%s 释放了b锁' % name)
if __name__ == '__main__':
ll = ['egon', 'alex', '铁蛋']
for name in ll:
t1 = Thread(target=eat_apple, args=(name,))
t2 = Thread(target=eat_egg, args=(name,))
t1.start()
t2.start()
5.递归锁
# 递归锁(可重入),同一个人可以多次acquire,每acquire一次,内部计数器加1,每relaese一次,内部计数器减一
# 只有计数器不为0,其他人都不获得这把锁
from threading import Thread, Lock, RLock
import time
# 同一把锁
# mutexA = Lock()
# mutexB = mutexA
# 使用可重入锁解决(同一把锁)
# mutexA = RLock()
# mutexB = mutexA
mutexA = mutexB = RLock()
def eat_apple(name):
mutexA.acquire()
print('%s 获取到了a锁' % name)
mutexB.acquire()
print('%s 获取到了b锁' % name)
print('开始吃苹果,并且吃完了')
mutexB.release()
print('%s 释放了b锁' % name)
mutexA.release()
print('%s 释放了a锁' % name)
def eat_egg(name):
mutexB.acquire()
print('%s 获取到了b锁' % name)
time.sleep(2)
mutexA.acquire()
print('%s 获取到了a锁' % name)
print('开始吃鸡蛋,并且吃完了')
mutexA.release()
print('%s 释放了a锁' % name)
mutexB.release()
print('%s 释放了b锁' % name)
if __name__ == '__main__':
ll = ['egon', 'alex', '铁蛋']
for name in ll:
t1 = Thread(target=eat_apple, args=(name,))
t2 = Thread(target=eat_egg, args=(name,))
t1.start()
t2.start()
6.信号量
# Semaphore:信号量可以理解为多把锁,同时允许多个线程来更改数据
from threading import Thread, Semaphore
import time
import random
sm = Semaphore(3) # 数字表示可以同时有多少个线程操作
def task(name):
sm.acquire()
print('%s 正在蹲坑' % name)
time.sleep(random.randint(1, 5))
sm.release()
if __name__ == '__main__':
for i in range(20):
t = Thread(target=task, args=('屌丝男%s号' % i,))
t.start()
7.EVENT事件
# 一些线程需要等到其他线程执行完成之后才能执行,类似于发射信号
# 比如一个线程等待另一个线程执行结束再继续执行
# from threading import Thread, Event
# import time
#
# event = Event()
#
#
# def girl(name):
# print('%s 现在不单身,正在谈恋爱'%name)
# time.sleep(10)
# print('%s 分手了,给屌丝男发了信号'%name)
# event.set()
#
#
# def boy(name):
# print('%s 在等着女孩分手'%name)
# event.wait() # 只要没来信号,就卡在者
# print('女孩分手了,机会来了,冲啊')
#
#
# if __name__ == '__main__':
# lyf = Thread(target=girl, args=('刘亦菲',))
# lyf.start()
#
# for i in range(10):
# b = Thread(target=boy, args=('屌丝男%s号' % i,))
# b.start()
# 作业:起两个线程,第一个线程读文件的前半部分,读完发一个信号,另一个进程读后半部分,并打印
from threading import Thread, Event
import time
import os
event = Event()
# 获取文件总大小
size = os.path.getsize('a.txt')
def read_first():
with open('a.txt', 'r', encoding='utf-8') as f:
n = size // 2 # 取文件一半,整除
data = f.read(n)
print(data)
print('我一半读完了,发了个信号')
event.set()
def read_last():
event.wait() # 等着发信号
with open('a.txt', 'r', encoding='utf-8') as f:
n = size // 2 # 取文件一半,整除
# 光标从文件开头开始,移动了n个字节,移动到文件一半
f.seek(n, 0)
data = f.read()
print(data)
if __name__ == '__main__':
t1 = Thread(target=read_first)
t1.start()
t2 = Thread(target=read_last)
t2.start()
8.线程QUEUE
# 进程queue和线程不是一个
# from multiprocessing import Queue
# 线程queue
from queue import Queue, LifoQueue, PriorityQueue
# 线程间通信,因为共享变量会出现数据不安全问题,用线程queue通信,不需要加锁,内部自带
# queue是线程安全的
'''
三种线程Queue
-Queue:队列,先进先出
-PriorityQueue:优先级队列,谁小谁先出
-LifoQueue:栈,后进先出
'''
# 如何使用
# q=Queue(5)
# q.put("lqz")
# q.put("egon")
# q.put("铁蛋")
# q.put("钢弹")
# q.put("金蛋")
#
#
# # q.put("银蛋")
# # q.put_nowait("银蛋")
# # 取值
# print(q.get())
# print(q.get())
# print(q.get())
# print(q.get())
# print(q.get())
# # 卡住
# # print(q.get())
# # q.get_nowait()
# # 是否满,是否空
# print(q.full())
# print(q.empty())
# LifoQueue
# q=LifoQueue(5)
# q.put("lqz")
# q.put("egon")
# q.put("铁蛋")
# q.put("钢弹")
# q.put("金蛋")
# #
# # q.put("ddd蛋")
# print(q.get())
# PriorityQueue:数字越小,级别越高
# q=PriorityQueue(3)
# q.put((-10,'金蛋'))
# q.put((100,'银蛋'))
# q.put((101,'铁蛋'))
# # q.put((1010,'铁dd蛋')) # 不能再放了
#
# print(q.get())
# print(q.get())
# print(q.get())
9.并发的TCP通信
# server.py from multiprocessing import Process import socket def task(conn): while True: try: data = conn.recv(1024) if len(data) == 0: break print(data) conn.send(data.upper()) except Exception as e: print(e) break conn.close() if __name__ == '__main__': server = socket.socket() server.bind(('127.0.0.1', 8081)) server.listen(5) # 多线程,或者多进程 while True: # 连接循环 conn, addr = server.accept() # 多用户的服务端 t = Process(target=task, args=(conn,)) t.start() ### 单用户的服务端 # while True: # try: # data = conn.recv(1024) # if len(data) == 0: break # print(data) # conn.send(data.upper()) # except Exception as e: # print(e) # break # conn.close() # client.py import socket import time cli = socket.socket() cli.connect(('127.0.0.1', 8081)) while True: cli.send(b'hello world') time.sleep(0.1) data = cli.recv(1024) print(data)
10.线程池小案例
from concurrent.futures import ThreadPoolExecutor import requests # 爬虫会学到的模块 pool = ThreadPoolExecutor(2) def get_pages(url): # https://www.baidu.com res = requests.get(url) # 向这个地址发送请求 name = url.rsplit('/')[-1] + '.html' print(name) # www.baidu.com.html # res.content拿到页面的二进制 return {'name': name, 'text': res.content} def call_back(f): dic = f.result() with open(dic['name'], 'wb') as f: f.write(dic['text']) if __name__ == '__main__': ll = ['https://www.baidu.com', 'https://www.mzitu.com', 'https://www.cnblogs.com'] for url in ll: pool.submit(get_pages, url).add_done_callback(call_back)
11.线程池和进程池
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor from threading import Thread import time import random pool = ThreadPoolExecutor(5) # 数字是池的大小 # pool = ProcessPoolExecutor(5) # 数字是池的大小 def task(name): print('%s任务开始' % name) time.sleep(random.randint(1, 4)) print('任务结束') return '%s 返回了' % name def call_back(f): # print(type(f)) print(f.result()) if __name__ == '__main__': # ll=[] # for i in range(10): # 起了100个线程 # # t=Thread(target=task) # # t.start() # res = pool.submit(task, '屌丝男%s号' % i) # 不需要再写在args中了 # # res是Future对象 # # from concurrent.futures._base import Future # # print(type(res)) # # print(res.result()) # 像join,只要执行result,就会等着结果回来,就变成串行了 # ll.append(res) # # for res in ll: # print(res.result()) # 终极使用 for i in range(10): # 起了100个线程 # 向线程池中提交一个任务,等任务执行完成,自动回到到call_back函数执行 pool.submit(task, '屌丝男%s号' % i).add_done_callback(call_back)