codeforces div 313

C题

思路:补全三角形之后 减去三个角的个数和

锁了代码一看人家,就写了三行。。

公式: (f + a  + b)^2 - b^2 - f^2 - d^2

 

D题

忧伤。。本来觉得直接递归模拟会T,结果姿势正确还可以过。。

标程思路:化成字典序最小的串然后比较。。

 1 /*Author :usedrose  */
 2 /*Created Time :2015/7/23 8:02:58*/
 3 /*File Name :2.cpp*/
 4 #include <cstdio>
 5 #include <iostream>
 6 #include <algorithm>
 7 #include <sstream>
 8 #include <cstdlib>
 9 #include <cstring>
10 #include <climits>
11 #include <vector>
12 #include <string>
13 #include <ctime>
14 #include <cmath>
15 #include <deque>
16 #include <queue>
17 #include <stack>
18 #include <set>
19 #include <map>
20 #define INF 0x3f3f3f3f
21 #define eps 1e-8
22 #define pi acos(-1.0)
23 #define MAXN 1110
24 #define OK cout << "ok" << endl;
25 #define o(a) cout << #a << " = " << a << endl
26 #define o1(a,b) cout << #a << " = " << a << "  " << #b << " = " << b << endl
27 using namespace std;
28 typedef long long LL;
29 
30 string smallest(string s) {
31     if (s.length() % 2 == 1) return s;
32     string s1 = smallest(s.substr(0, s.length()/2));
33     string s2 = smallest(s.substr(s.length()/2, s.length()));
34     if (s1 < s2) return s1 + s2;
35     else return s2 + s1;
36 }
37 
38 int main()
39 {
40     //freopen("data.in","r",stdin);
41     //freopen("data.out","w",stdout);
42     cin.tie(0);
43     ios::sync_with_stdio(false);
44     string a, b;
45     cin >> a >> b;
46     a = smallest(a);
47     b = smallest(b);
48     if (a == b) cout <<"YES" << endl;
49     else cout << "NO" << endl;
50     return 0; 
51 }
View Code

 

E题

题意:从h*w的格子, 从左上角(1,1)走到右下角(h, w),要求不能经过给出的几个黑格子,求有多少种可能。

组合数+逆元搞一下。。

这个 %= , +=, 真是6。。。

 1 /*Author :usedrose  */
 2 /*Created Time :2015/7/23 9:08:32*/
 3 /*File Name :2.cpp*/
 4 #include <cstdio>
 5 #include <iostream>
 6 #include <algorithm>
 7 #include <sstream>
 8 #include <cstdlib>
 9 #include <cstring>
10 #include <climits>
11 #include <vector>
12 #include <string>
13 #include <ctime>
14 #include <cmath>
15 #include <deque>
16 #include <queue>
17 #include <stack>
18 #include <set>
19 #include <map>
20 #define INF 0x3f3f3f3f
21 #define eps 1e-8
22 #define pi acos(-1.0)
23 #define MAXH 200010
24 #define MAXN 2010
25 #define OK cout << "ok" << endl;
26 #define o(a) cout << #a << " = " << a << endl
27 #define o1(a,b) cout << #a << " = " << a << "  " << #b << " = " << b << endl
28 using namespace std;
29 typedef long long LL;
30 const int mod = 1e9 + 7;
31 
32 struct Point {
33     int x, y;
34     bool operator<(const Point &ss) & {
35         return x + y  < ss.x + ss.y;    
36     }
37 }p[MAXN];
38 LL fac[MAXH], inv[MAXH];
39 LL f[MAXN];
40 
41 inline LL FastPow(LL a, LL b) 
42 {
43     LL res = 1;
44     while (b) {
45         if (b&1) (res *= a) %= mod;
46         (a *= a) %= mod;
47         b >>= 1;
48     }
49     return res;
50 }
51 
52 LL Calc(int a, int b)
53 {
54     return (((fac[a+b-2]*inv[a-1])%mod)*inv[b-1])%mod;
55 }
56 int h, w, n, mx;
57 
58 int main()
59 {
60     //freopen("data.in","r",stdin);
61     //freopen("data.out","w",stdout);
62     cin.tie(0);
63     ios::sync_with_stdio(false);
64     cin >> h >> w >> n;
65     for (int i = 1;i <= n; ++ i)
66         cin >> p[i].x >> p[i].y;
67     p[++n] = (Point){h, w};
68     mx = h + w;
69     sort(p+1, p + 1 + n);
70     fac[0] = inv[0] = 1;
71     for (int i = 1;i <= mx; ++ i)
72         fac[i] = (fac[i-1]*(LL)i)% mod;
73     for (int i = 1;i <= mx; ++ i)
74         inv[i] = FastPow(fac[i], mod-2);
75 
76     for (int i = 1;i <= n; ++ i) {
77         f[i] = Calc(p[i].x, p[i].y);
78         for (int j = 1;j < i; ++ j) 
79             if (p[j].x <= p[i].x && p[j].y <= p[i].y)
80             {
81                 f[i] -= f[j]*Calc(p[i].x - p[j].x + 1, p[i].y - p[j].y + 1)%mod;
82                 ((f[i] %= mod) += mod) %= mod;
83             }
84     }    
85     cout << f[n] << endl;
86     return 0;
87 }
View Code

附:

a / b = x (mod M)

只要 M 是一个素数,而且 b 不是 M 的倍数,就可以用一个逆元整数 b’,通过 a / b = a * b' (mod M),来以乘换除。

费马小定理说,对于素数 M 任意不是 M 的倍数的 b,都有:

b ^ (M-1) = 1 (mod M)

于是可以拆成:

b * b ^ (M-2) = 1 (mod M)

于是:

a / b = a / b * (b * b ^ (M-2)) = a * (b ^ (M-2)) (mod M)

也就是说我们要求的逆元就是 b ^ (M-2) (mod M)

 

posted @ 2015-07-23 11:21  UsedRose  阅读(162)  评论(0编辑  收藏  举报