字符串匹配经典问题整理

KMP算法

1、找出字符串中第一个匹配项的下标

class Solution:
    def strStr(self, s: str, pattern: str) -> int:
        if len(pattern) == 0:
            return 0
        ne = [0] * len(pattern)
        ne[0], k = -1, 0
        for i in range(2, len(pattern)):
            while k != 0 and pattern[k] != pattern[i -1]:
                k = ne[k] 

            if pattern[i - 1] == pattern[k]:
                ne[i] = k + 1
                k += 1
        
        j = 0
        for i in range(len(s)):
            while j > 0 and pattern[j] != s[i]:
                j = ne[j]
            if s[i] == pattern[j]:
                j += 1
                if j == len(pattern):
                    return i - j  + 1

        return -1

2、找出数组中的美丽下标 II  -- 匹配多个下标

 class Solution:
    def beautifulIndices(self, s: str, a: str, b: str, k: int) -> List[int]:
        def kmp(s, pattern):
            if len(pattern) == 0:
                return 0
            ne = [0] * len(pattern)
            ne[0], k = -1, 0
            for i in range(2, len(pattern)):
                while k != 0 and pattern[k] != pattern[i -1]:
                    k = ne[k] 

                if pattern[i - 1] == pattern[k]:
                    ne[i] = k + 1
                    k += 1
            
            j, res = 0, []
            for i in range(len(s)):
                while j > 0 and pattern[j] != s[i]:
                    j = ne[j]
                if s[i] == pattern[j]:
                    j += 1
                    if j == len(pattern):
                        res.append(i - j + 1)
                        j = j - 1
                        j = ne[j]
                        while j > 0 and pattern[j] != s[i]:
                            j = ne[j]
                        if s[i] == pattern[j]:
                            j += 1

            return res
        a1, b1 = kmp(s, a), kmp(s, b)
        res = []
        for idx in a1:
            left = bisect_left(b1, idx - k)
            right = bisect_right(b1, idx + k) - 1
            if left <= right and left < len(b1):
                res.append(idx)
        return res

3、将单词恢复初始状态所需的最短时间 II  -- 自身匹配

class Solution:
    def minimumTimeToInitialState(self, word: str, kk: int) -> int:
        def kmp(needle):
            if len(needle) == 0:
                return 0
            ne = [0] * len(needle)
            ne[0], k = -1, 0
            for i in range(2, len(needle)):
                while k != 0 and needle[k] != needle[i -1]:
                    k = ne[k] 

                if needle[i - 1] == needle[k]:
                    ne[i] = k + 1
                    k += 1
            
            j, i, res = len(needle), len(needle) - 1, -1
            
            while j > 0:
                if len(needle) - j > 0 and (len(needle) - j) % kk == 0:
                    return (len(needle) - j) // kk
                j = j - 1
                j = ne[j]
                while j > 0 and needle[j] != needle[i]:
                    j = ne[j]
                if needle[i] == needle[j]:
                    j += 1
            return res
        res = kmp(word)
        if res == -1:
            return len(word) // kk + (len(word) % kk > 0)
        return res

 4、kmp算法不适合匹配通配符,例如替换字符后匹配,正确解法是暴力匹配算法:

class Solution:
    def matchReplacement(self, s: str, sub: str, m: List[List[str]]) -> bool:
        d = defaultdict(set)
        for i, j in m:
            d[i].add(j)
        for i in range(len(s) - len(sub) + 1):
            for j in range(len(sub)):
                if s[i + j] != sub[j] and s[i + j] not in d[sub[j]]:
                    break
            else:
                return True
        return False

5、树形kmp --  二叉树中的链表

# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, val=0, next=None):
#         self.val = val
#         self.next = next
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def isSubPath(self, head: ListNode, root: TreeNode) -> bool:        
        p, k = head.next, head
        head.last = None
        while p:
            p.last = head
            p = p.next
        p = head.next
        while p and p.next:
            while k != head and k.val != p.val:
                k = k.last 
            if k.val == p.val:
                p.next.last = k.next
                k = k.next
            p = p.next
        @cache
        def dfs(p, q):
            if not q: return True
            if not p: return False
            res = False
            if p.val == q.val:
                return dfs(p.left, q.next) or dfs(p.right, q.next)
            if res: return True
            if q.last: res = dfs(p, q.last) or dfs(p, q.last)
            if res: return True
            return dfs(p.left, head) or dfs(p.right, head)
        if not root: return False
        return dfs(root, head)

6、无限重复kmp算法 -- 最大重复子字符串

class Solution:
    def maxRepeating(self, sequence: str, word: str) -> int:
        ne = defaultdict(int)
        def build():
            ne[0], k, j = -1, 0, 2
            c = 1
            while True:
                i = j % len(word)
                while k != 0 and word[k % len(word)] != word[i -1]:
                    k = ne[k] 

                if word[i - 1] == word[k % len(word)]:
                    ne[j] = k + 1
                    k += 1
                j += 1
                if j % len(word) == 0: 
                    yield c
                    c += 1
        
        m = build()
        c = next(m)
        j, maxl = 0, 0
        for i in range(len(sequence)):
            while j > 0 and word[j % len(word)] != sequence[i]:
                j = ne[j]
            if sequence[i] == word[j % len(word)]:
                j += 1
                if j % len(word) == 0:
                    maxl = max(maxl, j // len(word))
                    if maxl >= c: 
                        c = next(m)
        return maxl

7、重复的子字符串

class Solution:
    def repeatedSubstringPattern(self, s: str) -> bool:
        return s in (s+s)[1:-1]

8、旋转字符串

class Solution(object):
    def rotateString(self, A, B):
        return len(A) == len(B) and B in A+A

9、kmp+ 数位dp -- 找到所有好字符串

class Solution:
    def findGoodStrings(self, n: int, s1: str, s2: str, evil: str) -> int:
        ne = [0] * len(evil)
        ne[0], k = -1, 0
        for i in range(2, len(evil)):
            while k != 0 and evil[k] != evil[i -1]:
                k = ne[k] 

            if evil[i - 1] == evil[k]:
                ne[i] = k + 1
                k += 1

        @cache
        def f(s, i: int, is_limit: bool, j) -> int:
            if j == len(evil): return 0
            if i == n: return 1
            res = 0
            up = (ord(s[i]) - ord('a')) if is_limit else 25
            for d in range(0, up + 1):  # 枚举要填入的数字 d
                c = chr(d + ord('a'))
                nj = j
                while nj > 0 and evil[nj] != c:
                    nj = ne[nj]
                if evil[nj] == c:
                    nj += 1
                res += f(s, i + 1, is_limit and d == up, nj)
            return res % (10 ** 9 + 7)

        return (f(s2, 0, True, 0) - f(s1, 0, True, 0) + (1 if evil not in s1 else 0)) % (10 ** 9 + 7)

10、最长快乐前缀

class Solution:
    def longestPrefix(self, s: str) -> str:
        n = len(s)
        fail = [-1] * n
        for i in range(1, n):
            j = fail[i - 1]
            while j != -1 and s[j + 1] != s[i]:
                j = fail[j]
            if s[j + 1] == s[i]:
                fail[i] = j + 1

        return s[:fail[-1] + 1]

11、删除一个字符串中所有出现的给定子字符串

class Solution:
    def removeOccurrences(self, s: str, part: str) -> str:
        m = len(part)
        pi1 = [0] * m   # part 的前缀数组
        # 更新 part 的前缀数组
        j = 0
        for i in range(1, m):
            while j > 0 and part[i] != part[j]:
                j = pi1[j-1]
            if part[i] == part[j]:
                j += 1
            pi1[i] = j
        
        res = []
        pi2 = [0]   # res 的前缀数组
        for ch in s:
            # 模拟从左至右匹配的过程
            res.append(ch)
            # 更新 res 的前缀数组
            j = pi2[-1]
            while j > 0 and ch != part[j]:
                j = pi1[j-1]
            if ch == part[j]:
                j += 1
            pi2.append(j)
            if j == m:
                # 如果匹配成功,那么删去对应后缀
                pi2[-m:] = []
                res[-m:] = []
        return "".join(res)

12、扩展kmp(z函数)-- 构造字符串的总得分和

class Solution:
    def sumScores(self, s: str) -> int:
        n = len(s)
        z = [0] * n
        ans, l, r = n, 0, 0
        for i in range(1, n):
            z[i] = max(min(z[i - l], r - i + 1), 0)  
            while i + z[i] < n and s[z[i]] == s[i + z[i]]:
                l, r = i, i + z[i]
                z[i] += 1
            ans += z[i]
        return ans

字典树 

1、实现 Trie (前缀树)

class Trie:

    def __init__(self):
        self.children = [None] * 26
        self.isEnd = False

    def insert(self, word: str) -> None:
        node = self
        for ch in word:
            ch = ord(ch) - ord("a")
            if not node.children[ch]:
                node.children[ch] = Trie()
            node = node.children[ch]
        node.isEnd = True

    def searchPrefix(self, prefix:str):
        node = self
        for ch in prefix:
            ch = ord(ch) - ord("a")
            if not node.children[ch]:
                return None
            node = node.children[ch]
        return node

    def search(self, word: str) -> bool:
        node = self.searchPrefix(word)
        return node is not None and node.isEnd


    def startsWith(self, prefix: str) -> bool:
       return self.searchPrefix(prefix) is not None

2、添加与搜索单词 - 数据结构设计

class WordDictionary:

    def __init__(self):
        """
        Initialize your data structure here.
        """
        self.isEnd = False
        self.ch = [None] * 26


    def addWord(self, word: str) -> None:
        p = self
        for c in word:
            c = ord(c) - ord('a')
            if not p.ch[c]:
                p.ch[c] = WordDictionary()
            p = p.ch[c]
        p.isEnd = True 

    def search(self, word: str) -> bool:
        return self.searchSub(self, word)
        
    
    def searchSub(self, p, word):
        for i, c in enumerate(word):
            if c == '.':    
                res = False
                for a in p.ch:
                    if a: res = res or self.searchSub(a, word[i + 1:])
                return res
            else:
                c = ord(c) - ord('a')
                if not p.ch[c]:
                    return False
                p = p.ch[c]
        return p.isEnd


# Your WordDictionary object will be instantiated and called as such:
# obj = WordDictionary()
# obj.addWord(word)
# param_2 = obj.search(word)

3、统计前后缀下标对 II  -- 双字符字典树

class Trie:
    def __init__(self):
        self.child = {}
        self.count = 0
    
    def add(self, cc):
        if cc not in self.child:
            self.child[cc] = Trie()
        self.child[cc].count += 1
        return self.child[cc]

    def get(self, cc):
        if cc not in self.child:
            return None
        return self.child[cc] 

class Solution:
    def countPrefixSuffixPairs(self, words: List[str]) -> int:
        n = len(words)
        root = Trie()
        res = 0
        for i in reversed(range(n)):
            p = root
            for j, c in enumerate(words[i]):
                cc = c + words[i][-j - 1]
                if not p: break
                p = p.get(cc)
            
            if p: res += p.count
            p = root
            for j, c in enumerate(words[i]):
                p = p.add(c + words[i][-j - 1])
            
        return res

4、含最多 K 个可整除元素的子数组

class Solution:
    def countDistinct(self, nums: List[int], k: int, p: int) -> int:
        ne = [{}]
        
        def get():
            ne.append({})
            return len(ne) - 1
        
        for i in range(len(nums)):
            cnt, node = 0, 0
            for j in range(i, len(nums)):
                if nums[j] % p == 0: cnt += 1
                if cnt > k: break
                if nums[j] not in ne[node]:
                    ne[node][nums[j]] = get()
                node = ne[node][nums[j]]
        
        return len(ne) - 1

 5、数组中两个数的最大异或值  -- 异或反向匹配

class Tire:

    def __init__(self):
        self.ch = [None] * 2
    
    def build(self, nums):
        for num in nums:
            p = self
            for i in range(31, -1, -1):
                t = (num >> i) & 1
                if not p.ch[t]:
                    p.ch[t] = Tire()
                p = p.ch[t]

class Solution:
    def findMaximumXOR(self, nums: List[int]) -> int:
        t = Tire()
        t.build(nums)
        max_n = 0
        for num in nums:
            p = t
            xor = 0
            for i in range(31, -1, -1):
                n = (num >> i) & 1
                m = not n
                if not p.ch[m]:
                    p = p.ch[n]
                    xor = xor << 1
                else:
                    p = p.ch[m]
                    xor = xor << 1 | 1
            max_n = max(max_n, xor)
        return max_n

 字符串哈希

1、判断 DFS 字符串是否是回文串

P = 31
MOD = 10 ** 9 + 7

class Solution:
    def findAnswer(self, parent: List[int], s: str) -> List[bool]:
        m = defaultdict(list)
        for i, p in enumerate(parent):
            if p > -1:
                m[p].append(i)
        res = [False] * len(parent)

        def dfs(p):
            r1, r2, retf, retb, le = "", "", 0, 0, 0
            for k in m[p]:
                t1, t2, f, b, l = dfs(k)
                r1 += t1
                r2 = t2 + r2
                retf = (retf * pow(P, l, MOD) + f) % MOD
                retb = (retb + b * pow(P, le, MOD)) % MOD
                le += l
            else:
                r1 += s[p]
                r2 = s[p] + r2
                retf = (retf * pow(P, 1, MOD) + (ord(s[p]) - ord('a'))) % MOD
                retb = (retb + (ord(s[p]) - ord('a')) * pow(P, le, MOD)) % MOD
                le += 1

            res[p] = (retf == retb and r1 == r2)

            return r1, r2, retf, retb, le

        dfs(0)
        return res

 

posted on 2024-02-22 00:32  sw-lab  阅读(25)  评论(0编辑  收藏  举报

导航