HOG特征提取原理及实现

 

                            HOG特征提取

  1背景:

    HOG是Histogram of Oriented Gradient的缩写,是一种在计算机视觉和图像处理中用来进行目标检测的特征描述子。可结合OPENCV的SVM分类器等用于图像的识别。

  2.特征提取流程:

    HOG特征提取流程可分为5个部分:检测窗口、归一化图像、计算梯度、统计直方图、梯度直方图归一化、得到HOG特征向量,以下分步骤介绍。

    (1)检测窗口:

         HOG通过窗口(window)和块(block)将图像进行分割。通过以细胞(cell)为单位,对图像某一区域的像素值进行数学计算处理。在此先介绍窗口(window)、块(block)和细胞(cell)的概念及之间的联系。

         窗口(window):将图像按一定大小分割成多个相同的窗口,滑动。

         块(block):将每个窗口按一定大小分割成多个相同的块,滑动。

         细胞(cell):将每个窗口按一定大小分割成多个相同的细胞,属于特征提取的单元,静止不动。

          图像(image)->检测窗口(win)->图像块(block)->细胞单元(cell)

         如下是图像的表示。

 

      

 

       黑色表示窗口的划分,蓝色表示块的划分,黄色表示细胞的划分。在检测窗口部分,将图像按照窗口大小进行划分,而后再讲每个窗口按照块大小进行划分,再将每个块以细胞为单元进行划分。(窗口根据窗口滑动的大小可进行移动,块根据块滑动大小进行移动,如若不理解,看下面数学计算。)

    (2)归一化图像:

        归一化分为gamma空间和颜色空间归一化。为减少光照因素影响,将整个图像进行规范化(归一化)。(归一化公式:y=(x-MinValue)/(MaxValue-MinValue))。归一化同时可以避免在图像的纹理强度中,局部的表层曝光贡献度的比重较大的情况。标准化Gamma压缩公式:I(x,y)=I(x,y)^gamma.    gamma根据自己效果取值,如1/2.

    (3)计算梯度:

        计算图像横坐标和纵坐标方向的梯度,并根据横坐标和纵坐标的梯度,计算梯度方向。下图为计算公式图:

 

        

 

          在算法中,常先用[-1,0,1]进行卷积操作求得x方向的梯度值,再采用[-1,0,1]T进行卷积操作求得y方向。而后采用上述公式求梯度幅值和方向。

     (4)构建梯度直方图:

        HOG构建方向梯度直方图在细胞(cell)中完成:

          bins(可理解为划分的个数)决定方向的划分。一般bins取9,将梯度方向划分为9个区间。(注:关于划分区间,有些博主以360°计算。鄙人查opencv书籍,发现确应按180度进行计算,artan所得值得范围即为180°。)例如,假设一个细胞尺寸为6*6,则对这个细胞内的36个像素点,先判断像素点梯度方向所属的区间,后根据像素点的梯度幅值大小和梯度方向的大小进行加权于对应的梯度方向区间。(加权方法可有线性加权、平方根等等各种高大尚的加权方法)

                    以下是按照9个区间,进行角度划分的图像。

 

          

 

       (5)块内进行细胞归一化梯度直方图。

          原因:局部光照的变化及前景-背景对比度的变化,使梯度强度的变化范围很大,在此需要进行归一化,(查资料,使用的归一化函数有L2-norm、L2-Hys、L1-norm于L1-sqrt等,O(∩_∩)O,没听过?没办法,谁让你那么菜呢???)进一步对光照、阴影和边缘进行压缩。根据上述介绍,把

       (6)生成HOG特征向量:

          最后组合所有的块,生成特征向量:例对于一个64*128的窗口而言,每8*8的像素组成一个cell,每2*2个cell组成一个块,每个块有9*4个特征,以8个像素为步长,水平方向将有7个扫描窗口,垂直方向将有15个扫描窗口。所以,一个64*128的窗口共36*7*15=3780个特征,代码中一个hog描述子针对一个检测窗口。

   3.HOG加权方法:

      HOG采用三线性加权法,有两个部分用到加权,分别是构建梯度直方图和细胞归一化。以下分别介绍:

     在构建梯度直方图时,假若一个像素点的梯度方向为25°,距离0~20°和20~40°最近,采用加权方法,对相邻两个区间进行幅度值相加,分别为(25-10)/20=0.75和(25-20)/20=0.25的权重值进行累加。

     同时,在收集块内梯度方向直方图时,存在一个既定假设,即位于不同细胞内的像素点只会对其从属的细胞进行投影,并不会对其周围的细胞产生影响。显然,若对于细胞交界处的像素点和在块滑动情况下,这样的假设未免显得有点牵强,因为它们与其周围所有的细胞都是相关的。

    如下图,左图中的方框处为待处理像素点,它位于block中的C0单元中,根据位于不同细胞内的像素点只会对其从属的细胞进行投影,那像素点仅仅会对C0细胞产生影响,而忽略了对C1,C2,C3细胞的贡献,为了弥补,借鉴线性插值方法在各个像素的位置上进行加权运算,利用该点与四个cell中的中心像素点(图中4个圆点)的距离计算权值,将待处理像素点的梯度幅值分别加权累加到C0、C1、C2、C3中相应的直方图上。

    

 

 

     综合考虑,在两个位置坐标(x,y)和一个方向坐标( θ )上进行三线性插值,关键要解决的问题是应该在哪些bin上进行加权累加,累
加时权值又是多少。将一个像素点处的梯度幅值加权分配到4个cell中与该点梯度方向相邻的2个bin上。按照公式(7)修正直方图
向量,其中x、y轴表征像素点的空间位置,z轴表征该点的梯度方向(即θ)。对于待处理像素点(x,y),设其梯度幅值为ω ,梯度方向为
z,z1和z2分别是与之最邻近的两个bin的中点坐标。梯度直方图h沿x、y、z三个维度的直方图带宽分别为b=[bx, by, bz],bx=by=8,bz=
180°/9。如图6所示为三线性插值计算梯度方向直方图向量的示意图,左图中的方框处为待处理像素点,计算block的每个cell中与该
点梯度方向相邻的2个bin,共计8个直方图柱上的权值,将该点的梯度幅值进行加权累加,即形成block中的梯度方向直方图[5]。      h(x1,y1,z1)←h(x1,y1,z1)+ω(1- x -x1bx )(1- y -y1by )(1- z -z1bz )

h(x1,y1,z2)←h(x1,y1,z2)+ω(1- x -x1bx )(1- y -y1by )(1- z -z2bz )

h(x1,y2,z1)←h(x1,y2,z1)+ω(1- x -x1bx )(y -y2by )(1- z -z1bz )

h(x2,y1,z1)←h(x2,y1,z1)+ω(x -x1bx )(1- y -y1by )(1- z -z1bz )

h(x1,y2,z2)←h(x1,y2,z2)+ω(1- x -x1bx )(y -y2by )(z -z2bz )

h(x2,y1,z2)←h(x2,y1,z2)+ω(x -x 2bx )(1- y -y1by )(1- z -z2bz )

h(x2,y2,z1)←h(x2,y2,z1)+ω(x -x 2bx )(1- y -y2by )(1- z -z1bz )

h(x2,y2,z2)←h(x2,y2,z2)+ω(x -x 2bx )(y -y2by )(z -z2bz )

由于采用插值法,故可以克服区域重叠问题。

   4.HOG算法优缺点:

     优点:

        (1)HOG表示边缘的结构特征,可以描述局部的形状信息。

        (2)位置和方向空间的量化一定程度上可以抑制平移和旋转带来的影响。

        (3)采用归一化,可以抵消光照带来的变化

     缺点:

         (1)描述子生成过程冗长,维度较高

         (2)很难处理遮挡问题。

         (3)对噪点敏感

HOG函数的实现:

HOGDescriptor hog(Size(64,128),Size(16,16),Size(8,8),Size(8,8),9);//创建HOG,参数分别为窗口大小(64,128),块尺寸(16,16),块步长(8,8),cell尺寸(8,8),直方图bin个数9
std::vector<float> descriptors;
hog->compute(trainImg,descriptors, Size(64, 48), Size(0, 0)); //参数分别为图像,HOG特征描述子,window步长,图像填充大小padding,window步长和padding可忽略。

HOG+SVM行人识别demo:

#include<iostream>

#include <fstream>

#include <opencv2/core/core.hpp>

#include <opencv2/highgui/highgui.hpp>

#include <opencv2/imgproc/imgproc.hpp>

#include <opencv2/objdetect/objdetect.hpp>

#include <opencv2/ml/ml.hpp>

 
using namespace cv;

using namespace std;


#define PosSamNO 1126    //正样本个数

#define NegSamNO 1210    //负样本个数

 

//生成setSVMDetector()中用到的检测子参数时要用到的SVM的decision_func参数时protected类型,只能继承之后通过函数访问

class MySVM : public CvSVM

{

    public:

        //获得SVM的决策函数中的alpha数组

        double * get_alpha_vector()

        {

            return this->decision_func->alpha;

        }

 

        //获得SVM的决策函数中的rho参数,即偏移量

        float get_rho()

        {

            return this->decision_func->rho;

        }

};

 

int main()

{

    HOGDescriptor hog(Size(64,128),Size(16,16),Size(8,8),Size(8,8),9);//窗口大小(64,128),块尺寸(16,16),块步长(8,8),cell尺寸(8,8),直方图bin个数9

    int DescriptorDim;//HOG描述子的维数,由图片大小、检测窗口大小、块大小、细胞单元中直方图bin个数决定

    MySVM svm;

    string ImgName;//图片名

    ifstream finPos("pos.txt");//正样本图片的文件名列表

    ifstream finNeg("neg.txt");//负样本图片的文件名列表

    Mat sampleFeatureMat;//所有训练样本的特征向量组成的矩阵,行数等于所有样本的个数,列数等于HOG描述子维数

    Mat sampleLabelMat;//训练样本的类别向量,行数等于所有样本的个数,列数等于1;1表示有人,-1表示无人

    //依次读取正样本图片,生成HOG描述子

    for(int num=0; num<PosSamNO && getline(finPos,ImgName); num++)

    {

        ImgName = "E:\\INRIAPerson\\Posjpg64_128\\" + ImgName;//加上正样本的路径名

        Mat src = imread(ImgName);//读取图片

        vector<float> descriptors;//HOG描述子向量

        hog.compute(src,descriptors,Size(8,8));//计算HOG描述子,检测窗口移动步长(8,8)

        //处理第一个样本时初始化特征向量矩阵和类别矩阵,因为只有知道了特征向量的维数才能初始化特征向量矩阵

        if( 0 == num )
        {
            DescriptorDim = descriptors.size();//HOG描述子的维数

            //初始化所有训练样本的特征向量组成的矩阵sampleFeatureMat,行数等于所有样本的个数,列数等于HOG描述子维数

            sampleFeatureMat = Mat::zeros(PosSamNO+NegSamNO, DescriptorDim, CV_32FC1);

            //初始化训练样本的类别向量,行数等于所有样本的个数,列数等于1;1表示有人,-1表示无人

            sampleLabelMat = Mat::zeros(PosSamNO+NegSamNO+HardExampleNO, 1, CV_32FC1);

        }

        //将计算好的HOG描述子复制到样本特征矩阵sampleFeatureMat

        for(int i=0; i<DescriptorDim; i++)

            sampleFeatureMat.at<float>(num,i) = descriptors[i];//第num个样本的特征向量中的第i个元素

 

        sampleLabelMat.at<float>(num,0) = 1;//正样本类别为1,有人

    }

 

    //处理负样本的流程和正样本大同小异

    for(int num=0; num<NegSamNO && getline(finNeg,ImgName); num++)

    {

        ImgName = "E:\\INRIAPerson\\Negjpg_undesign\\" + ImgName;//加上负样本的路径名

        Mat src = imread(ImgName);//读取图片

 

        vector<float> descriptors;//HOG描述子向量

        hog.compute(src,descriptors,Size(8,8));//计算HOG描述子,检测窗口移动步长(8,8)

 

        //将计算好的HOG描述子复制到样本特征矩阵sampleFeatureMat

        for(int i=0; i<DescriptorDim; i++)

            sampleFeatureMat.at<float>(num+PosSamNO,i) = descriptors[i];//第PosSamNO+num个样本的特征向量中的第i个元素

        sampleLabelMat.at<float>(num+PosSamNO,0) = -1;//负样本类别为-1,无人

    }

 

    //输出样本的HOG特征向量矩阵到文件

    ofstream fout("SampleFeatureMat.txt");

    for(int i=0; i<PosSamNO+NegSamNO; i++)

    {

      fout<<i<<endl;

      for(int j=0; j<DescriptorDim; j++)

          fout<<sampleFeatureMat.at<float>(i,j)<<"  ";

      fout<<endl;

    }

 

    //训练SVM分类器,迭代终止条件,当迭代满1000次或误差小于FLT_EPSILON时停止迭代

    CvTermCriteria criteria = cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, FLT_EPSILON);

    //SVM参数:SVM类型为C_SVC;线性核函数;松弛因子C=0.01

    CvSVMParams param(CvSVM::C_SVC, CvSVM::LINEAR, 0, 1, 0, 0.01, 0, 0, 0, criteria);

    cout<<"开始训练SVM分类器"<<endl;

    svm.train(sampleFeatureMat, sampleLabelMat, Mat(), Mat(), param);

    cout<<"训练完成"<<endl;

    svm.save("SVM_HOG.xml");//将训练好的SVM模型保存为xml文件

 

    DescriptorDim = svm.get_var_count();//特征向量的维数,即HOG描述子的维数

    cout<<"描述子维数:"<<DescriptorDim<<endl;

    int supportVectorNum = svm.get_support_vector_count();//支持向量的个数

    cout<<"支持向量个数:"<<supportVectorNum<<endl;

 

    Mat alphaMat = Mat::zeros(1, supportVectorNum, CV_32FC1);//alpha向量,长度等于支持向量个数

    Mat supportVectorMat = Mat::zeros(supportVectorNum, DescriptorDim, CV_32FC1);//支持向量矩阵

    Mat resultMat = Mat::zeros(1, DescriptorDim, CV_32FC1);//alpha向量乘以支持向量矩阵的结果

 

    //将支持向量的数据复制到supportVectorMat矩阵中,共有supportVectorNum个支持向量,每个支持向量的数据有DescriptorDim维(种)

    for(int i=0; i<supportVectorNum; i++)

    {

        const float * pSVData = svm.get_support_vector(i);//返回第i个支持向量的数据指针

        for(int j=0; j<DescriptorDim; j++)

            supportVectorMat.at<float>(i,j) = pSVData[j];//第i个向量的第j维数据

    }

 

    //将alpha向量的数据复制到alphaMat中

    //double * pAlphaData = svm.get_alpha_vector();//返回SVM的决策函数中的alpha向量

    double * pAlphaData = svm.get_alpha_vector();

    for(int i=0; i<supportVectorNum; i++)

    {

        alphaMat.at<float>(0,i) = pAlphaData[i];//alpha向量,长度等于支持向量个数

    }

            

        resultMat = -1 * alphaMat * supportVectorMat;//计算-(alphaMat * supportVectorMat),结果放到resultMat中,

       //注意因为svm.predict使用的是alpha*sv*another-rho,如果为负的话则认为是正样本,在HOG的检测函数中,

       //使用rho-alpha*sv*another如果为正的话是正样本,所以需要将后者变为负数之后保存起来

    //得到最终的setSVMDetector(const vector<float>& detector)参数中可用的检测子

    vector<float> myDetector;

    //将resultMat中的数据复制到数组myDetector中

    for(int i=0; i<DescriptorDim; i++)

    {

        myDetector.push_back(resultMat.at<float>(0,i));

    }

    myDetector.push_back(svm.get_rho());//最后添加偏移量rho,得到检测子

    cout<<"检测子维数:"<<myDetector.size()<<endl;

    //设置HOGDescriptor的检测子,用我们训练的检测器代替默认的检测器

    HOGDescriptor myHOG;

    myHOG.setSVMDetector(myDetector);

 

    //保存检测子参数到文件

    ofstream fout("HOGDetectorParagram.txt");

    for(int i=0; i<myDetector.size(); i++)

        fout<<myDetector[i]<<endl;

 

    //读入图片进行人体检测

    Mat src = imread("test1.png");

    vector<Rect> found, found_filtered;//矩形框数组

    cout<<"进行多尺度HOG人体检测"<<endl;

    myHOG.detectMultiScale(src, found, 0, Size(8,8), Size(32,32), 1.05, 2);//对图片进行多尺度行人检测

    cout<<"找到的矩形框个数:"<<found.size()<<endl;

 

    //找出所有没有嵌套的矩形框r,并放入found_filtered中,如果有嵌套的话,则取外面最大的那个矩形框放入found_filtered中

    for(int i=0; i < found.size(); i++)

    {

        Rect r = found[i];

        int j=0;

        for(; j < found.size(); j++)

        {

            if(j != i && (r & found[j]) == r)//说明r是被嵌套在found[j]里面的,舍弃当前的r

                break;

        }

        if( j == found.size())//r没有被嵌套在第0,1,2...found.size()-1号的矩形框内,则r是符合条件的

            found_filtered.push_back(r);

    }

 

    //对画出来的矩形框做一些大小调整

    for(int i=0; i<found_filtered.size(); i++)

    {

        Rect r = found_filtered[i];

        r.x += cvRound(r.width*0.1);

        r.width = cvRound(r.width*0.8);

        r.y += cvRound(r.height*0.07);

        r.height = cvRound(r.height*0.8);

        rectangle(src, r.tl(), r.br(), Scalar(255,0,0), 2);

    }

 

    imwrite("ImgProcessed.jpg",src);

    namedWindow("src",0);

    imshow("src",src);

    waitKey();



}

HOG源代码:

1 /*M///////////////////////////////////////////////////////////////////////////////////////
   2 //
   3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
   4 //
   5 //  By downloading, copying, installing or using the software you agree to this license.
   6 //  If you do not agree to this license, do not download, install,
   7 //  copy or use the software.
   8 //
   9 //
  10 //                           License Agreement
  11 //                For Open Source Computer Vision Library
  12 //
  13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
  14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
  15 // Third party copyrights are property of their respective owners.
  16 //
  17 // Redistribution and use in source and binary forms, with or without modification,
  18 // are permitted provided that the following conditions are met:
  19 //
  20 //   * Redistribution's of source code must retain the above copyright notice,
  21 //     this list of conditions and the following disclaimer.
  22 //
  23 //   * Redistribution's in binary form must reproduce the above copyright notice,
  24 //     this list of conditions and the following disclaimer in the documentation
  25 //     and/or other materials provided with the distribution.
  26 //
  27 //   * The name of the copyright holders may not be used to endorse or promote products
  28 //     derived from this software without specific prior written permission.
  29 //
  30 // This software is provided by the copyright holders and contributors "as is" and
  31 // any express or implied warranties, including, but not limited to, the implied
  32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
  33 // In no event shall the Intel Corporation or contributors be liable for any direct,
  34 // indirect, incidental, special, exemplary, or consequential damages
  35 // (including, but not limited to, procurement of substitute goods or services;
  36 // loss of use, data, or profits; or business interruption) however caused
  37 // and on any theory of liability, whether in contract, strict liability,
  38 // or tort (including negligence or otherwise) arising in any way out of
  39 // the use of this software, even if advised of the possibility of such damage.
  40 //
  41 //M*/
  42 
  43 #include "precomp.hpp"
  44 #include <iterator>
  45 #ifdef HAVE_IPP
  46 #include "ipp.h"
  47 #endif
  48 /****************************************************************************************\
  49       The code below is implementation of HOG (Histogram-of-Oriented Gradients)
  50       descriptor and object detection, introduced by Navneet Dalal and Bill Triggs.
  51 
  52       The computed feature vectors are compatible with the
  53       INRIA Object Detection and Localization Toolkit
  54       (http://pascal.inrialpes.fr/soft/olt/)
  55 \****************************************************************************************/
  56 
  57 namespace cv
  58 {
  59 
  60 size_t HOGDescriptor::getDescriptorSize() const
  61 {
  62     //下面2个语句是保证block中有整数个cell;保证block在窗口中能移动整数次
  63     CV_Assert(blockSize.width % cellSize.width == 0 &&
  64         blockSize.height % cellSize.height == 0);
  65     CV_Assert((winSize.width - blockSize.width) % blockStride.width == 0 &&
  66         (winSize.height - blockSize.height) % blockStride.height == 0 );
  67     //返回的nbins是每个窗口中检测到的hog向量的维数
  68     return (size_t)nbins*
  69         (blockSize.width/cellSize.width)*
  70         (blockSize.height/cellSize.height)*
  71         ((winSize.width - blockSize.width)/blockStride.width + 1)*
  72         ((winSize.height - blockSize.height)/blockStride.height + 1);
  73 }
  74 
  75 //winSigma到底是什么作用呢?
  76 double HOGDescriptor::getWinSigma() const
  77 {
  78     return winSigma >= 0 ? winSigma : (blockSize.width + blockSize.height)/8.;
  79 }
  80 
  81 //svmDetector是HOGDescriptor内的一个成员变量,数据类型为向量vector。
  82 //用来保存hog特征用于svm分类时的系数的.
  83 //该函数返回为真的实际含义是什么呢?保证与hog特征长度相同,或者相差1,但为什么
  84 //相差1也可以呢?
  85 bool HOGDescriptor::checkDetectorSize() const
  86 {
  87     size_t detectorSize = svmDetector.size(), descriptorSize = getDescriptorSize();
  88     return detectorSize == 0 ||
  89         detectorSize == descriptorSize ||
  90         detectorSize == descriptorSize + 1;
  91 }
  92 
  93 void HOGDescriptor::setSVMDetector(InputArray _svmDetector)
  94 {  
  95     //这里的convertTo函数只是将图像Mat属性更改,比如说通道数,矩阵深度等。
  96     //这里是将输入的svm系数矩阵全部转换成浮点型。
  97     _svmDetector.getMat().convertTo(svmDetector, CV_32F);
  98     CV_Assert( checkDetectorSize() );
  99 }
 100 
 101 #define CV_TYPE_NAME_HOG_DESCRIPTOR "opencv-object-detector-hog"
 102 
 103 //FileNode是opencv的core中的一个文件存储节点类,这个节点用来存储读取到的每一个文件元素。
 104 //一般是读取XML和YAML格式的文件
 105 //又因为该函数是把文件节点中的内容读取到其类的成员变量中,所以函数后面不能有关键字const
 106 bool HOGDescriptor::read(FileNode& obj)
 107 {
 108     //isMap()是用来判断这个节点是不是一个映射类型,如果是映射类型,则每个节点都与
 109     //一个名字对应起来。因此这里的if语句的作用就是需读取的文件node是一个映射类型
 110     if( !obj.isMap() )
 111         return false;
 112     //中括号中的"winSize"是指返回名为winSize的一个节点,因为已经知道这些节点是mapping类型
 113     //也就是说都有一个对应的名字。
 114     FileNodeIterator it = obj["winSize"].begin();
 115     //操作符>>为从节点中读入数据,这里是将it指向的节点数据依次读入winSize.width,winSize.height
 116     //下面的几条语句功能类似
 117     it >> winSize.width >> winSize.height;
 118     it = obj["blockSize"].begin();
 119     it >> blockSize.width >> blockSize.height;
 120     it = obj["blockStride"].begin();
 121     it >> blockStride.width >> blockStride.height;
 122     it = obj["cellSize"].begin();
 123     it >> cellSize.width >> cellSize.height;
 124     obj["nbins"] >> nbins;
 125     obj["derivAperture"] >> derivAperture;
 126     obj["winSigma"] >> winSigma;
 127     obj["histogramNormType"] >> histogramNormType;
 128     obj["L2HysThreshold"] >> L2HysThreshold;
 129     obj["gammaCorrection"] >> gammaCorrection;
 130     obj["nlevels"] >> nlevels;
 131     
 132     //isSeq()是判断该节点内容是不是一个序列
 133     FileNode vecNode = obj["SVMDetector"];
 134     if( vecNode.isSeq() )
 135     {
 136         vecNode >> svmDetector;
 137         CV_Assert(checkDetectorSize());
 138     }
 139     //上面的都读取完了后就返回读取成功标志
 140     return true;
 141 }
 142     
 143 void HOGDescriptor::write(FileStorage& fs, const String& objName) const
 144 {
 145     //将objName名字输入到文件fs中
 146     if( !objName.empty() )
 147         fs << objName;
 148 
 149     fs << "{" CV_TYPE_NAME_HOG_DESCRIPTOR
 150     //下面几句依次将hog描述子内的变量输入到文件fs中,且每次输入前都输入
 151     //一个名字与其对应,因此这些节点是mapping类型。
 152     << "winSize" << winSize
 153     << "blockSize" << blockSize
 154     << "blockStride" << blockStride
 155     << "cellSize" << cellSize
 156     << "nbins" << nbins
 157     << "derivAperture" << derivAperture
 158     << "winSigma" << getWinSigma()
 159     << "histogramNormType" << histogramNormType
 160     << "L2HysThreshold" << L2HysThreshold
 161     << "gammaCorrection" << gammaCorrection
 162     << "nlevels" << nlevels;
 163     if( !svmDetector.empty() )
 164         //svmDetector则是直接输入序列,也有对应的名字。
 165         fs << "SVMDetector" << "[:" << svmDetector << "]";
 166     fs << "}";
 167 }
 168 
 169 //从给定的文件中读取参数
 170 bool HOGDescriptor::load(const String& filename, const String& objname)
 171 {
 172     FileStorage fs(filename, FileStorage::READ);
 173     //一个文件节点有很多叶子,所以一个文件节点包含了很多内容,这里当然是包含的
 174     //HOGDescriptor需要的各种参数了。
 175     FileNode obj = !objname.empty() ? fs[objname] : fs.getFirstTopLevelNode();
 176     return read(obj);
 177 }
 178 
 179 //将类中的参数以文件节点的形式写入文件中。
 180 void HOGDescriptor::save(const String& filename, const String& objName) const
 181 {
 182     FileStorage fs(filename, FileStorage::WRITE);
 183     write(fs, !objName.empty() ? objName : FileStorage::getDefaultObjectName(filename));
 184 }
 185 
 186 //复制HOG描述子到c中
 187 void HOGDescriptor::copyTo(HOGDescriptor& c) const
 188 {
 189     c.winSize = winSize;
 190     c.blockSize = blockSize;
 191     c.blockStride = blockStride;
 192     c.cellSize = cellSize;
 193     c.nbins = nbins;
 194     c.derivAperture = derivAperture;
 195     c.winSigma = winSigma;
 196     c.histogramNormType = histogramNormType;
 197     c.L2HysThreshold = L2HysThreshold;
 198     c.gammaCorrection = gammaCorrection;
 199     //vector类型也可以用等号赋值
 200     c.svmDetector = svmDetector; c.nlevels = nlevels; } 
 201 
 202 //计算图像img的梯度幅度图像grad和梯度方向图像qangle.
 203 //paddingTL为需要在原图像img左上角扩增的尺寸,同理paddingBR
 204 //为需要在img图像右下角扩增的尺寸。
 205 void HOGDescriptor::computeGradient(const Mat& img, Mat& grad, Mat& qangle,
 206                                     Size paddingTL, Size paddingBR) const
 207 {
 208     //该函数只能计算8位整型深度的单通道或者3通道图像.
 209     CV_Assert( img.type() == CV_8U || img.type() == CV_8UC3 );
 210 
 211     //将图像按照输入参数进行扩充,这里不是为了计算边缘梯度而做的扩充,因为
 212     //为了边缘梯度而扩充是在后面的代码完成的,所以这里为什么扩充暂时还不明白。
 213     Size gradsize(img.cols + paddingTL.width + paddingBR.width,
 214                   img.rows + paddingTL.height + paddingBR.height);
 215     grad.create(gradsize, CV_32FC2);  // <magnitude*(1-alpha), magnitude*alpha>
 216     qangle.create(gradsize, CV_8UC2); // [0..nbins-1] - quantized gradient orientation
 217     Size wholeSize;
 218     Point roiofs;
 219     //locateROI在此处是如果img图像是从其它父图像中某一部分得来的,那么其父图像
 220     //的大小尺寸就为wholeSize了,img图像左上角相对于父图像的位置点就为roiofs了。
 221     //对于正样本,其父图像就是img了,所以这里的wholeSize就和img.size()是一样的,
 222     //对应负样本,这2者不同;因为里面的关系比较不好懂,这里权且将wholesSize理解为
 223     //img的size,所以roiofs就应当理解为Point(0, 0)了。
 224     img.locateROI(wholeSize, roiofs);
 225 
 226     int i, x, y;
 227     int cn = img.channels();
 228 
 229     //_lut为行向量,用来作为浮点像素值的存储查找表
 230     Mat_<float> _lut(1, 256);
 231     const float* lut = &_lut(0,0);
 232 
 233     //gamma校正指的是将0~256的像素值全部开根号,即范围缩小了,且变换范围都不成线性了,
 234     if( gammaCorrection )
 235         for( i = 0; i < 256; i++ )
 236             _lut(0,i) = std::sqrt((float)i);
 237     else
 238         for( i = 0; i < 256; i++ )
 239             _lut(0,i) = (float)i;
 240 
 241     //创建长度为gradsize.width+gradsize.height+4的整型buffer
 242     AutoBuffer<int> mapbuf(gradsize.width + gradsize.height + 4);
 243     int* xmap = (int*)mapbuf + 1;
 244     int* ymap = xmap + gradsize.width + 2; 
 245 
 246     //言外之意思borderType就等于4了,因为opencv的源码中是如下定义的。
 247     //#define IPL_BORDER_REFLECT_101    4
 248     //enum{...,BORDER_REFLECT_101=IPL_BORDER_REFLECT_101,...}
 249     //borderType为边界扩充后所填充像素点的方式。   
 250     /*
 251     Various border types, image boundaries are denoted with '|'
 252 
 253     * BORDER_REPLICATE:     aaaaaa|abcdefgh|hhhhhhh
 254     * BORDER_REFLECT:       fedcba|abcdefgh|hgfedcb
 255     * BORDER_REFLECT_101:   gfedcb|abcdefgh|gfedcba
 256     * BORDER_WRAP:          cdefgh|abcdefgh|abcdefg        
 257     * BORDER_CONSTANT:      iiiiii|abcdefgh|iiiiiii  with some specified 'i'
 258    */
 259     const int borderType = (int)BORDER_REFLECT_101;
 260 
 261     for( x = -1; x < gradsize.width + 1; x++ )
 262     /*int borderInterpolate(int p, int len, int borderType)
 263       其中参数p表示的是扩充后图像的一个坐标,相对于对应的坐标轴而言;
 264       len参数表示对应源图像的一个坐标轴的长度;borderType为扩充类型,
 265       在上面已经有过介绍.
 266       所以这个函数的作用是从扩充后的像素点坐标推断出源图像中对应该点
 267       的坐标值。
 268    */
 269     //这里的xmap和ymap实际含义是什么呢?其实xmap向量里面存的就是
 270     //扩充后图像第一行像素点对应与原图像img中的像素横坐标,可以看
 271         //出,xmap向量中有些元素的值是相同的,因为扩充图像肯定会对应
 272         //到原图像img中的某一位置,而img本身尺寸内的像素也会对应该位置。
 273         //同理,ymap向量里面存的是扩充后图像第一列像素点对应于原图想img
 274         //中的像素纵坐标。
 275         xmap[x] = borderInterpolate(x - paddingTL.width + roiofs.x,
 276                         wholeSize.width, borderType) - roiofs.x;
 277     for( y = -1; y < gradsize.height + 1; y++ )
 278         ymap[y] = borderInterpolate(y - paddingTL.height + roiofs.y,
 279                         wholeSize.height, borderType) - roiofs.y;
 280 
 281     // x- & y- derivatives for the whole row
 282     int width = gradsize.width;
 283     AutoBuffer<float> _dbuf(width*4);
 284     float* dbuf = _dbuf;
 285     //DX为水平梯度图,DY为垂直梯度图,Mag为梯度幅度图,Angle为梯度角度图
 286     //该构造方法的第4个参数表示矩阵Mat的数据在内存中存放的位置。由此可以
 287     //看出,这4幅图像在内存中是连续存储的。
 288     Mat Dx(1, width, CV_32F, dbuf);
 289     Mat Dy(1, width, CV_32F, dbuf + width);
 290     Mat Mag(1, width, CV_32F, dbuf + width*2);
 291     Mat Angle(1, width, CV_32F, dbuf + width*3);
 292 
 293     int _nbins = nbins;
 294     //angleScale==9/pi;
 295     float angleScale = (float)(_nbins/CV_PI);
 296 #ifdef HAVE_IPP
 297     Mat lutimg(img.rows,img.cols,CV_MAKETYPE(CV_32F,cn));
 298     Mat hidxs(1, width, CV_32F);
 299     Ipp32f* pHidxs  = (Ipp32f*)hidxs.data;
 300     Ipp32f* pAngles = (Ipp32f*)Angle.data;
 301 
 302     IppiSize roiSize;
 303     roiSize.width = img.cols;
 304     roiSize.height = img.rows;
 305 
 306     for( y = 0; y < roiSize.height; y++ )
 307     {
 308        const uchar* imgPtr = img.data + y*img.step;
 309        float* imglutPtr = (float*)(lutimg.data + y*lutimg.step);
 310 
 311        for( x = 0; x < roiSize.width*cn; x++ )
 312        {
 313           imglutPtr[x] = lut[imgPtr[x]];
 314        }
 315     }
 316 
 317 #endif
 318     for( y = 0; y < gradsize.height; y++ )
 319     {
 320 #ifdef HAVE_IPP
 321         const float* imgPtr  = (float*)(lutimg.data + lutimg.step*ymap[y]);
 322         const float* prevPtr = (float*)(lutimg.data + lutimg.step*ymap[y-1]);
 323         const float* nextPtr = (float*)(lutimg.data + lutimg.step*ymap[y+1]);
 324 #else
 325     //imgPtr在这里指的是img图像的第y行首地址;prePtr指的是img第y-1行首地址;
 326     //nextPtr指的是img第y+1行首地址;
 327         const uchar* imgPtr  = img.data + img.step*ymap[y];
 328         const uchar* prevPtr = img.data + img.step*ymap[y-1];
 329         const uchar* nextPtr = img.data + img.step*ymap[y+1];
 330 #endif
 331         float* gradPtr = (float*)grad.ptr(y);
 332         uchar* qanglePtr = (uchar*)qangle.ptr(y);
 333     
 334     //输入图像img为单通道图像时的计算
 335         if( cn == 1 )
 336         {
 337             for( x = 0; x < width; x++ )
 338             {
 339                 int x1 = xmap[x];
 340 #ifdef HAVE_IPP
 341                 dbuf[x] = (float)(imgPtr[xmap[x+1]] - imgPtr[xmap[x-1]]);
 342                 dbuf[width + x] = (float)(nextPtr[x1] - prevPtr[x1]);
 343 #else
 344         //下面2句把Dx,Dy就计算出来了,因为其对应的内存都在dbuf中
 345                 dbuf[x] = (float)(lut[imgPtr[xmap[x+1]]] - lut[imgPtr[xmap[x-1]]]);
 346                 dbuf[width + x] = (float)(lut[nextPtr[x1]] - lut[prevPtr[x1]]);
 347 #endif
 348             }
 349         }
 350     //当cn==3时,也就是输入图像为3通道图像时的处理。
 351         else
 352         {
 353             for( x = 0; x < width; x++ )
 354             {
 355         //x1表示第y行第x1列的地址
 356                 int x1 = xmap[x]*3;
 357                 float dx0, dy0, dx, dy, mag0, mag;
 358 #ifdef HAVE_IPP
 359                 const float* p2 = imgPtr + xmap[x+1]*3;
 360                 const float* p0 = imgPtr + xmap[x-1]*3;
 361 
 362                 dx0 = p2[2] - p0[2];
 363                 dy0 = nextPtr[x1+2] - prevPtr[x1+2];
 364                 mag0 = dx0*dx0 + dy0*dy0;
 365 
 366                 dx = p2[1] - p0[1];
 367                 dy = nextPtr[x1+1] - prevPtr[x1+1];
 368                 mag = dx*dx + dy*dy;
 369 
 370                 if( mag0 < mag )
 371                 {
 372                     dx0 = dx;
 373                     dy0 = dy;
 374                     mag0 = mag;
 375                 }
 376 
 377                 dx = p2[0] - p0[0];
 378                 dy = nextPtr[x1] - prevPtr[x1];
 379                 mag = dx*dx + dy*dy;
 380 #else
 381         //p2为第y行第x+1列的地址
 382         //p0为第y行第x-1列的地址
 383                 const uchar* p2 = imgPtr + xmap[x+1]*3;
 384                 const uchar* p0 = imgPtr + xmap[x-1]*3;
 385         
 386         //计算第2通道的幅值
 387                 dx0 = lut[p2[2]] - lut[p0[2]];
 388                 dy0 = lut[nextPtr[x1+2]] - lut[prevPtr[x1+2]];
 389                 mag0 = dx0*dx0 + dy0*dy0;
 390 
 391         //计算第1通道的幅值
 392                 dx = lut[p2[1]] - lut[p0[1]];
 393                 dy = lut[nextPtr[x1+1]] - lut[prevPtr[x1+1]];
 394                 mag = dx*dx + dy*dy;
 395 
 396         //取幅值最大的那个通道
 397                 if( mag0 < mag )
 398                 {
 399                     dx0 = dx;
 400                     dy0 = dy;
 401                     mag0 = mag;
 402                 }
 403 
 404         //计算第0通道的幅值
 405                 dx = lut[p2[0]] - lut[p0[0]];
 406                 dy = lut[nextPtr[x1]] - lut[prevPtr[x1]];
 407                 mag = dx*dx + dy*dy;
 408  #endif
 409         //取幅值最大的那个通道
 410                 if( mag0 < mag )
 411                 {
 412                     dx0 = dx;
 413                     dy0 = dy;
 414                     mag0 = mag;
 415                 }
 416 
 417                 //最后求出水平和垂直方向上的梯度图像
 418         dbuf[x] = dx0;
 419                 dbuf[x+width] = dy0;
 420             }
 421         }
 422 #ifdef HAVE_IPP
 423         ippsCartToPolar_32f((const Ipp32f*)Dx.data, (const Ipp32f*)Dy.data, (Ipp32f*)Mag.data, pAngles, width);
 424         for( x = 0; x < width; x++ )
 425         {
 426            if(pAngles[x] < 0.f)
 427              pAngles[x] += (Ipp32f)(CV_PI*2.);
 428         }
 429 
 430         ippsNormalize_32f(pAngles, pAngles, width, 0.5f/angleScale, 1.f/angleScale);
 431         ippsFloor_32f(pAngles,(Ipp32f*)hidxs.data,width);
 432         ippsSub_32f_I((Ipp32f*)hidxs.data,pAngles,width);
 433         ippsMul_32f_I((Ipp32f*)Mag.data,pAngles,width);
 434 
 435         ippsSub_32f_I(pAngles,(Ipp32f*)Mag.data,width);
 436         ippsRealToCplx_32f((Ipp32f*)Mag.data,pAngles,(Ipp32fc*)gradPtr,width);
 437 #else
 438     //cartToPolar()函数是计算2个矩阵对应元素的幅度和角度,最后一个参数为是否
 439     //角度使用度数表示,这里为false表示不用度数表示,即用弧度表示。
 440     //如果只需计算2个矩阵对应元素的幅度图像,可以采用magnitude()函数。
 441     //-pi/2<Angle<pi/2;
 442         cartToPolar( Dx, Dy, Mag, Angle, false );
 443 #endif
 444         for( x = 0; x < width; x++ )
 445         {
 446 #ifdef HAVE_IPP
 447             int hidx = (int)pHidxs[x];
 448 #else
 449         //-5<angle<4
 450             float mag = dbuf[x+width*2], angle = dbuf[x+width*3]*angleScale - 0.5f;
 451             //cvFloor()返回不大于参数的最大整数
 452         //hidx={-5,-4,-3,-2,-1,0,1,2,3,4};
 453             int hidx = cvFloor(angle);
 454             //0<=angle<1;angle表示的意思是与其相邻的较小的那个bin的弧度距离(即弧度差)
 455             angle -= hidx;
 456             //gradPtr为grad图像的指针
 457         //gradPtr[x*2]表示的是与x处梯度方向相邻较小的那个bin的幅度权重;
 458         //gradPtr[x*2+1]表示的是与x处梯度方向相邻较大的那个bin的幅度权重
 459         gradPtr[x*2] = mag*(1.f - angle);
 460             gradPtr[x*2+1] = mag*angle;
 461 #endif
 462             if( hidx < 0 )
 463                 hidx += _nbins;
 464             else if( hidx >= _nbins )
 465                 hidx -= _nbins;
 466             assert( (unsigned)hidx < (unsigned)_nbins );
 467 
 468             qanglePtr[x*2] = (uchar)hidx;
 469             hidx++;
 470             //-1在补码中的表示为11111111,与-1相与的话就是自己本身了;
 471         //0在补码中的表示为00000000,与0相与的结果就是0了.
 472             hidx &= hidx < _nbins ? -1 : 0;
 473             qanglePtr[x*2+1] = (uchar)hidx;
 474         }
 475     }
 476 }
 477 
 478 
 479 struct HOGCache
 480 {
 481     struct BlockData
 482     {
 483         BlockData() : histOfs(0), imgOffset() {}
 484         int histOfs;
 485         Point imgOffset;
 486     };
 487 
 488     struct PixData
 489     {
 490         size_t gradOfs, qangleOfs;
 491         int histOfs[4];
 492         float histWeights[4];
 493         float gradWeight;
 494     };
 495 
 496     HOGCache();
 497     HOGCache(const HOGDescriptor* descriptor,
 498         const Mat& img, Size paddingTL, Size paddingBR,
 499         bool useCache, Size cacheStride);
 500     virtual ~HOGCache() {};
 501     virtual void init(const HOGDescriptor* descriptor,
 502         const Mat& img, Size paddingTL, Size paddingBR,
 503         bool useCache, Size cacheStride);
 504 
 505     Size windowsInImage(Size imageSize, Size winStride) const;
 506     Rect getWindow(Size imageSize, Size winStride, int idx) const;
 507 
 508     const float* getBlock(Point pt, float* buf);
 509     virtual void normalizeBlockHistogram(float* histogram) const;
 510 
 511     vector<PixData> pixData;
 512     vector<BlockData> blockData;
 513 
 514     bool useCache;
 515     vector<int> ymaxCached;
 516     Size winSize, cacheStride;
 517     Size nblocks, ncells;
 518     int blockHistogramSize;
 519     int count1, count2, count4;
 520     Point imgoffset;
 521     Mat_<float> blockCache;
 522     Mat_<uchar> blockCacheFlags;
 523 
 524     Mat grad, qangle;
 525     const HOGDescriptor* descriptor;
 526 };
 527 
 528 //默认的构造函数,不使用cache,块的直方图向量大小为0等
 529 HOGCache::HOGCache()
 530 {
 531     useCache = false;
 532     blockHistogramSize = count1 = count2 = count4 = 0;
 533     descriptor = 0;
 534 }
 535 
 536 //带参的初始化函数,采用内部的init函数进行初始化
 537 HOGCache::HOGCache(const HOGDescriptor* _descriptor,
 538         const Mat& _img, Size _paddingTL, Size _paddingBR,
 539         bool _useCache, Size _cacheStride)
 540 {
 541     init(_descriptor, _img, _paddingTL, _paddingBR, _useCache, _cacheStride);
 542 }
 543 
 544 //HOGCache结构体的初始化函数
 545 void HOGCache::init(const HOGDescriptor* _descriptor,
 546         const Mat& _img, Size _paddingTL, Size _paddingBR,
 547         bool _useCache, Size _cacheStride)
 548 {
 549     descriptor = _descriptor;
 550     cacheStride = _cacheStride;
 551     useCache = _useCache;
 552 
 553     //首先调用computeGradient()函数计算输入图像的权值梯度幅度图和角度量化图
 554     descriptor->computeGradient(_img, grad, qangle, _paddingTL, _paddingBR);
 555     //imgoffset是Point类型,而_paddingTL是Size类型,虽然类型不同,但是2者都是
 556     //一个二维坐标,所以是在opencv中是允许直接赋值的。
 557     imgoffset = _paddingTL;
 558 
 559     winSize = descriptor->winSize;
 560     Size blockSize = descriptor->blockSize;
 561     Size blockStride = descriptor->blockStride;
 562     Size cellSize = descriptor->cellSize;
 563     int i, j, nbins = descriptor->nbins;
 564     //rawBlockSize为block中包含像素点的个数
 565     int rawBlockSize = blockSize.width*blockSize.height;
 566     
 567     //nblocks为Size类型,其长和宽分别表示一个窗口中水平方向和垂直方向上block的
 568     //个数(需要考虑block在窗口中的移动)
 569     nblocks = Size((winSize.width - blockSize.width)/blockStride.width + 1,
 570                    (winSize.height - blockSize.height)/blockStride.height + 1);
 571     //ncells也是Size类型,其长和宽分别表示一个block中水平方向和垂直方向容纳下
 572     //的cell个数
 573     ncells = Size(blockSize.width/cellSize.width, blockSize.height/cellSize.height);
 574     //blockHistogramSize表示一个block中贡献给hog描述子向量的长度
 575     blockHistogramSize = ncells.width*ncells.height*nbins;
 576 
 577     if( useCache )
 578     {
 579         //cacheStride= _cacheStride,即其大小是由参数传入的,表示的是窗口移动的大小
 580         //cacheSize长和宽表示扩充后的图像cache中,block在水平方向和垂直方向出现的个数
 581         Size cacheSize((grad.cols - blockSize.width)/cacheStride.width+1,
 582                        (winSize.height/cacheStride.height)+1);
 583         //blockCache为一个float型的Mat,注意其列数的值
 584         blockCache.create(cacheSize.height, cacheSize.width*blockHistogramSize);
 585         //blockCacheFlags为一个uchar型的Mat
 586         blockCacheFlags.create(cacheSize);
 587         size_t cacheRows = blockCache.rows;
 588         //ymaxCached为vector<int>类型
 589         //Mat::resize()为矩阵的一个方法,只是改变矩阵的行数,与单独的resize()函数不相同。
 590         ymaxCached.resize(cacheRows);
 591         //ymaxCached向量内部全部初始化为-1
 592         for(size_t ii = 0; ii < cacheRows; ii++ )
 593             ymaxCached[ii] = -1;
 594     }
 595     
 596     //weights为一个尺寸为blockSize的二维高斯表,下面的代码就是计算二维高斯的系数
 597     Mat_<float> weights(blockSize);
 598     float sigma = (float)descriptor->getWinSigma();
 599     float scale = 1.f/(sigma*sigma*2);
 600 
 601     for(i = 0; i < blockSize.height; i++)
 602         for(j = 0; j < blockSize.width; j++)
 603         {
 604             float di = i - blockSize.height*0.5f;
 605             float dj = j - blockSize.width*0.5f;
 606             weights(i,j) = std::exp(-(di*di + dj*dj)*scale);
 607         }
 608 
 609     //vector<BlockData> blockData;而BlockData为HOGCache的一个结构体成员
 610     //nblocks.width*nblocks.height表示一个检测窗口中block的个数,
 611     //而cacheSize.width*cacheSize.heigh表示一个已经扩充的图片中的block的个数
 612     blockData.resize(nblocks.width*nblocks.height);
 613     //vector<PixData> pixData;同理,Pixdata也为HOGCache中的一个结构体成员
 614     //rawBlockSize表示每个block中像素点的个数
 615     //resize表示将其转换成列向量
 616     pixData.resize(rawBlockSize*3);
 617 
 618     // Initialize 2 lookup tables, pixData & blockData.
 619     // Here is why:
 620     //
 621     // The detection algorithm runs in 4 nested loops (at each pyramid layer):
 622     //  loop over the windows within the input image
 623     //    loop over the blocks within each window
 624     //      loop over the cells within each block
 625     //        loop over the pixels in each cell
 626     //
 627     // As each of the loops runs over a 2-dimensional array,
 628     // we could get 8(!) nested loops in total, which is very-very slow.
 629     //
 630     // To speed the things up, we do the following:
 631     //   1. loop over windows is unrolled in the HOGDescriptor::{compute|detect} methods;
 632     //         inside we compute the current search window using getWindow() method.
 633     //         Yes, it involves some overhead (function call + couple of divisions),
 634     //         but it's tiny in fact.
 635     //   2. loop over the blocks is also unrolled. Inside we use pre-computed blockData[j]
 636     //         to set up gradient and histogram pointers.
 637     //   3. loops over cells and pixels in each cell are merged
 638     //       (since there is no overlap between cells, each pixel in the block is processed once)
 639     //      and also unrolled. Inside we use PixData[k] to access the gradient values and
 640     //      update the histogram
 641     //count1,count2,count4分别表示block中同时对1个cell,2个cell,4个cell有贡献的像素点的个数。
 642     count1 = count2 = count4 = 0;
 643     for( j = 0; j < blockSize.width; j++ )
 644         for( i = 0; i < blockSize.height; i++ )
 645         {
 646             PixData* data = 0;
 647             //cellX和cellY表示的是block内该像素点所在的cell横坐标和纵坐标索引,以小数的形式存在。
 648             float cellX = (j+0.5f)/cellSize.width - 0.5f;
 649             float cellY = (i+0.5f)/cellSize.height - 0.5f;
 650             //cvRound返回最接近参数的整数;cvFloor返回不大于参数的整数;cvCeil返回不小于参数的整数
 651             //icellX0和icellY0表示所在cell坐标索引,索引值为该像素点相邻cell的那个较小的cell索引
 652             //当然此处就是由整数的形式存在了。
 653             //按照默认的系数的话,icellX0和icellY0只可能取值-1,0,1,且当i和j<3.5时对应的值才取-1
 654             //当i和j>11.5时取值为1,其它时刻取值为0(注意i,j最大是15,从0开始的)
 655             int icellX0 = cvFloor(cellX);
 656             int icellY0 = cvFloor(cellY);
 657             int icellX1 = icellX0 + 1, icellY1 = icellY0 + 1;
 658             //此处的cellx和celly表示的是真实索引值与最近邻cell索引值之间的差,
 659             //为后面计算同一像素对不同cell中的hist权重的计算。
 660             cellX -= icellX0;
 661             cellY -= icellY0;
 662       
 663                //满足这个if条件说明icellX0只能为0,也就是说block横坐标在(3.5,11.5)之间时
 664             if( (unsigned)icellX0 < (unsigned)ncells.width &&
 665                 (unsigned)icellX1 < (unsigned)ncells.width )
 666             {
 667                //满足这个if条件说明icellY0只能为0,也就是说block纵坐标在(3.5,11.5)之间时
 668                 if( (unsigned)icellY0 < (unsigned)ncells.height &&
 669                     (unsigned)icellY1 < (unsigned)ncells.height )
 670                 {
 671                     //同时满足上面2个if语句的像素对4个cell都有权值贡献
 672                     //rawBlockSize表示的是1个block中存储像素点的个数
 673                     //而pixData的尺寸大小为block中像素点的3倍,其定义如下:
 674                     //pixData.resize(rawBlockSize*3);
 675                     //pixData的前面block像素大小的内存为存储只对block中一个cell
 676                     //有贡献的pixel;中间block像素大小的内存存储对block中同时2个
 677                     //cell有贡献的pixel;最后面的为对block中同时4个cell都有贡献
 678                     //的pixel
 679                     data = &pixData[rawBlockSize*2 + (count4++)];
 680                     //下面计算出的结果为0
 681                     data->histOfs[0] = (icellX0*ncells.height + icellY0)*nbins;
 682                      //为该像素点对cell0的权重
 683                     data->histWeights[0] = (1.f - cellX)*(1.f - cellY);
 684                     //下面计算出的结果为18
 685                     data->histOfs[1] = (icellX1*ncells.height + icellY0)*nbins;
 686                     data->histWeights[1] = cellX*(1.f - cellY);
 687                     //下面计算出的结果为9
 688                     data->histOfs[2] = (icellX0*ncells.height + icellY1)*nbins;
 689                     data->histWeights[2] = (1.f - cellX)*cellY;
 690                     //下面计算出的结果为27
 691                     data->histOfs[3] = (icellX1*ncells.height + icellY1)*nbins;
 692                     data->histWeights[3] = cellX*cellY;
 693                 }
 694                 else
 695                    //满足这个else条件说明icellY0取-1或者1,也就是说block纵坐标在(0, 3.5)
 696                 //和(11.5, 15)之间.
 697                 //此时的像素点对相邻的2个cell有权重贡献
 698                 {
 699                     data = &pixData[rawBlockSize + (count2++)];                    
 700                     if( (unsigned)icellY0 < (unsigned)ncells.height )
 701                     {
 702                         //(unsigned)-1等于127>2,所以此处满足if条件时icellY0==1;
 703                         //icellY1==1;
 704                         icellY1 = icellY0;
 705                         cellY = 1.f - cellY;
 706                     }
 707                     //不满足if条件时,icellY0==-1;icellY1==0;
 708                     //当然了,这2种情况下icellX0==0;icellX1==1;
 709                     data->histOfs[0] = (icellX0*ncells.height + icellY1)*nbins;
 710                     data->histWeights[0] = (1.f - cellX)*cellY;
 711                     data->histOfs[1] = (icellX1*ncells.height + icellY1)*nbins;
 712                     data->histWeights[1] = cellX*cellY;
 713                     data->histOfs[2] = data->histOfs[3] = 0;
 714                     data->histWeights[2] = data->histWeights[3] = 0;
 715                 }
 716             }
 717             //当block中横坐标满足在(0, 3.5)和(11.5, 15)范围内时,即
 718             //icellX0==-1或==1
 719             else
 720             {
 721                 
 722                 if( (unsigned)icellX0 < (unsigned)ncells.width )
 723                 {
 724                     //icellX1=icllX0=1;
 725                     icellX1 = icellX0;
 726                     cellX = 1.f - cellX;
 727                 }
 728                 //当icllY0=0时,此时对2个cell有贡献
 729                 if( (unsigned)icellY0 < (unsigned)ncells.height &&
 730                     (unsigned)icellY1 < (unsigned)ncells.height )
 731                 {                    
 732                     data = &pixData[rawBlockSize + (count2++)];
 733                     data->histOfs[0] = (icellX1*ncells.height + icellY0)*nbins;
 734                     data->histWeights[0] = cellX*(1.f - cellY);
 735                     data->histOfs[1] = (icellX1*ncells.height + icellY1)*nbins;
 736                     data->histWeights[1] = cellX*cellY;
 737                     data->histOfs[2] = data->histOfs[3] = 0;
 738                     data->histWeights[2] = data->histWeights[3] = 0;
 739                 }
 740                 else
 741                 //此时只对自身的cell有贡献
 742                 {
 743                     data = &pixData[count1++];
 744                     if( (unsigned)icellY0 < (unsigned)ncells.height )
 745                     {
 746                         icellY1 = icellY0;
 747                         cellY = 1.f - cellY;
 748                     }
 749                     data->histOfs[0] = (icellX1*ncells.height + icellY1)*nbins;
 750                     data->histWeights[0] = cellX*cellY;
 751                     data->histOfs[1] = data->histOfs[2] = data->histOfs[3] = 0;
 752                     data->histWeights[1] = data->histWeights[2] = data->histWeights[3] = 0;
 753                 }
 754             }
 755             //为什么每个block中i,j位置的gradOfs和qangleOfs都相同且是如下的计算公式呢?
 756             //那是因为输入的_img参数不是代表整幅图片而是检测窗口大小的图片,所以每个
 757             //检测窗口中关于block的信息可以看做是相同的
 758             data->gradOfs = (grad.cols*i + j)*2;
 759             data->qangleOfs = (qangle.cols*i + j)*2;
 760             //每个block中i,j位置的权重都是固定的
 761             data->gradWeight = weights(i,j);
 762         }
 763 
 764     //保证所有的点都被扫描了一遍
 765     assert( count1 + count2 + count4 == rawBlockSize );
 766     // defragment pixData
 767     //将pixData中按照内存排满,这样节省了2/3的内存
 768     for( j = 0; j < count2; j++ )
 769         pixData[j + count1] = pixData[j + rawBlockSize];
 770     for( j = 0; j < count4; j++ )
 771         pixData[j + count1 + count2] = pixData[j + rawBlockSize*2];
 772     //此时count2表示至多对2个cell有贡献的所有像素点的个数
 773     count2 += count1;
 774     //此时count4表示至多对4个cell有贡献的所有像素点的个数
 775     count4 += count2;
 776 
 777     //上面是初始化pixData,下面开始初始化blockData
 778     // initialize blockData
 779     for( j = 0; j < nblocks.width; j++ )
 780         for( i = 0; i < nblocks.height; i++ )
 781         {
 782             BlockData& data = blockData[j*nblocks.height + i];
 783             //histOfs表示该block对检测窗口贡献的hog描述变量起点在整个
 784             //变量中的坐标
 785             data.histOfs = (j*nblocks.height + i)*blockHistogramSize;
 786             //imgOffset表示该block的左上角在检测窗口中的坐标
 787             data.imgOffset = Point(j*blockStride.width,i*blockStride.height);
 788         }
 789         //一个检测窗口对应一个blockData内存,一个block对应一个pixData内存。
 790 }
 791 
 792 
 793 //pt为该block左上角在滑动窗口中的坐标,buf为指向检测窗口中blocData的指针
 794 //函数返回一个block描述子的指针
 795 const float* HOGCache::getBlock(Point pt, float* buf)
 796 {
 797     float* blockHist = buf;
 798     assert(descriptor != 0);
 799 
 800     Size blockSize = descriptor->blockSize;
 801     pt += imgoffset;
 802 
 803     CV_Assert( (unsigned)pt.x <= (unsigned)(grad.cols - blockSize.width) &&
 804                (unsigned)pt.y <= (unsigned)(grad.rows - blockSize.height) );
 805 
 806     if( useCache )
 807     {
 808         //cacheStride可以认为和blockStride是一样的
 809         //保证所获取到HOGCache是我们所需要的,即在block移动过程中会出现
 810         CV_Assert( pt.x % cacheStride.width == 0 &&
 811                    pt.y % cacheStride.height == 0 );
 812         //cacheIdx表示的是block个数的坐标
 813         Point cacheIdx(pt.x/cacheStride.width,
 814                       (pt.y/cacheStride.height) % blockCache.rows);
 815         //ymaxCached的长度为一个检测窗口垂直方向上容纳的block个数
 816         if( pt.y != ymaxCached[cacheIdx.y] )
 817         {
 818             //取出blockCacheFlags的第cacheIdx.y行并且赋值为0
 819             Mat_<uchar> cacheRow = blockCacheFlags.row(cacheIdx.y);
 820             cacheRow = (uchar)0;
 821             ymaxCached[cacheIdx.y] = pt.y;
 822         }
 823 
 824         //blockHist指向该点对应block所贡献的hog描述子向量,初始值为空
 825         blockHist = &blockCache[cacheIdx.y][cacheIdx.x*blockHistogramSize];
 826         uchar& computedFlag = blockCacheFlags(cacheIdx.y, cacheIdx.x);
 827         if( computedFlag != 0 )
 828             return blockHist;
 829         computedFlag = (uchar)1; // set it at once, before actual computing
 830     }
 831 
 832     int k, C1 = count1, C2 = count2, C4 = count4;
 833     //
 834     const float* gradPtr = (const float*)(grad.data + grad.step*pt.y) + pt.x*2;
 835     const uchar* qanglePtr = qangle.data + qangle.step*pt.y + pt.x*2;
 836 
 837     CV_Assert( blockHist != 0 );
 838 #ifdef HAVE_IPP
 839     ippsZero_32f(blockHist,blockHistogramSize);
 840 #else
 841     for( k = 0; k < blockHistogramSize; k++ )
 842         blockHist[k] = 0.f;
 843 #endif
 844 
 845     const PixData* _pixData = &pixData[0];
 846 
 847     //C1表示只对自己所在cell有贡献的点的个数
 848     for( k = 0; k < C1; k++ )
 849     {
 850         const PixData& pk = _pixData[k];
 851         //a表示的是幅度指针
 852         const float* a = gradPtr + pk.gradOfs;
 853         float w = pk.gradWeight*pk.histWeights[0];
 854         //h表示的是相位指针
 855         const uchar* h = qanglePtr + pk.qangleOfs;
 856 
 857         //幅度有2个通道是因为每个像素点的幅值被分解到了其相邻的两个bin上了
 858         //相位有2个通道是因为每个像素点的相位的相邻处都有的2个bin的序号
 859         int h0 = h[0], h1 = h[1];
 860         float* hist = blockHist + pk.histOfs[0];
 861         float t0 = hist[h0] + a[0]*w;
 862         float t1 = hist[h1] + a[1]*w;
 863         //hist中放的为加权的梯度值
 864         hist[h0] = t0; hist[h1] = t1;
 865     }
 866 
 867     for( ; k < C2; k++ )
 868     {
 869         const PixData& pk = _pixData[k];
 870         const float* a = gradPtr + pk.gradOfs;
 871         float w, t0, t1, a0 = a[0], a1 = a[1];
 872         const uchar* h = qanglePtr + pk.qangleOfs;
 873         int h0 = h[0], h1 = h[1];
 874 
 875         //因为此时的像素对2个cell有贡献,这是其中一个cell的贡献
 876         float* hist = blockHist + pk.histOfs[0];
 877         w = pk.gradWeight*pk.histWeights[0];
 878         t0 = hist[h0] + a0*w;
 879         t1 = hist[h1] + a1*w;
 880         hist[h0] = t0; hist[h1] = t1;
 881 
 882         //另一个cell的贡献
 883         hist = blockHist + pk.histOfs[1];
 884         w = pk.gradWeight*pk.histWeights[1];
 885         t0 = hist[h0] + a0*w;
 886         t1 = hist[h1] + a1*w;
 887         hist[h0] = t0; hist[h1] = t1;
 888     }
 889 
 890     //和上面类似
 891     for( ; k < C4; k++ )
 892     {
 893         const PixData& pk = _pixData[k];
 894         const float* a = gradPtr + pk.gradOfs;
 895         float w, t0, t1, a0 = a[0], a1 = a[1];
 896         const uchar* h = qanglePtr + pk.qangleOfs;
 897         int h0 = h[0], h1 = h[1];
 898 
 899         float* hist = blockHist + pk.histOfs[0];
 900         w = pk.gradWeight*pk.histWeights[0];
 901         t0 = hist[h0] + a0*w;
 902         t1 = hist[h1] + a1*w;
 903         hist[h0] = t0; hist[h1] = t1;
 904 
 905         hist = blockHist + pk.histOfs[1];
 906         w = pk.gradWeight*pk.histWeights[1];
 907         t0 = hist[h0] + a0*w;
 908         t1 = hist[h1] + a1*w;
 909         hist[h0] = t0; hist[h1] = t1;
 910 
 911         hist = blockHist + pk.histOfs[2];
 912         w = pk.gradWeight*pk.histWeights[2];
 913         t0 = hist[h0] + a0*w;
 914         t1 = hist[h1] + a1*w;
 915         hist[h0] = t0; hist[h1] = t1;
 916 
 917         hist = blockHist + pk.histOfs[3];
 918         w = pk.gradWeight*pk.histWeights[3];
 919         t0 = hist[h0] + a0*w;
 920         t1 = hist[h1] + a1*w;
 921         hist[h0] = t0; hist[h1] = t1;
 922     }
 923 
 924     normalizeBlockHistogram(blockHist);
 925 
 926     return blockHist;
 927 }
 928 
 929 
 930 void HOGCache::normalizeBlockHistogram(float* _hist) const
 931 {
 932     float* hist = &_hist[0];
 933 #ifdef HAVE_IPP
 934     size_t sz = blockHistogramSize;
 935 #else
 936     size_t i, sz = blockHistogramSize;
 937 #endif
 938 
 939     float sum = 0;
 940 #ifdef HAVE_IPP
 941     ippsDotProd_32f(hist,hist,sz,&sum);
 942 #else
 943     //第一次归一化求的是平方和
 944     for( i = 0; i < sz; i++ )
 945         sum += hist[i]*hist[i];
 946 #endif
 947     //分母为平方和开根号+0.1
 948     float scale = 1.f/(std::sqrt(sum)+sz*0.1f), thresh = (float)descriptor->L2HysThreshold;
 949 #ifdef HAVE_IPP
 950     ippsMulC_32f_I(scale,hist,sz);
 951     ippsThreshold_32f_I( hist, sz, thresh, ippCmpGreater );
 952     ippsDotProd_32f(hist,hist,sz,&sum);
 953 #else
 954     for( i = 0, sum = 0; i < sz; i++ )
 955     {
 956         //第2次归一化是在第1次的基础上继续求平和和
 957         hist[i] = std::min(hist[i]*scale, thresh);
 958         sum += hist[i]*hist[i];
 959     }
 960 #endif
 961 
 962     scale = 1.f/(std::sqrt(sum)+1e-3f);
 963 #ifdef HAVE_IPP
 964     ippsMulC_32f_I(scale,hist,sz);
 965 #else
 966     //最终归一化结果
 967     for( i = 0; i < sz; i++ )
 968         hist[i] *= scale;
 969 #endif
 970 }
 971 
 972 
 973 //返回测试图片中水平方向和垂直方向共有多少个检测窗口
 974 Size HOGCache::windowsInImage(Size imageSize, Size winStride) const
 975 {
 976     return Size((imageSize.width - winSize.width)/winStride.width + 1,
 977                 (imageSize.height - winSize.height)/winStride.height + 1);
 978 }
 979 
 980 
 981 //给定图片的大小,已经检测窗口滑动的大小和测试图片中的检测窗口的索引,得到该索引处
 982 //检测窗口的尺寸,包括坐标信息
 983 Rect HOGCache::getWindow(Size imageSize, Size winStride, int idx) const
 984 {
 985     int nwindowsX = (imageSize.width - winSize.width)/winStride.width + 1;
 986     int y = idx / nwindowsX;//
 987     int x = idx - nwindowsX*y;//余数
 988     return Rect( x*winStride.width, y*winStride.height, winSize.width, winSize.height );
 989 }
 990 
 991 
 992 void HOGDescriptor::compute(const Mat& img, vector<float>& descriptors,
 993                             Size winStride, Size padding,
 994                             const vector<Point>& locations) const
 995 {
 996     //Size()表示长和宽都是0
 997     if( winStride == Size() )
 998         winStride = cellSize;
 999     //gcd为求最大公约数,如果采用默认值的话,则2者相同
1000     Size cacheStride(gcd(winStride.width, blockStride.width),
1001                      gcd(winStride.height, blockStride.height));
1002     size_t nwindows = locations.size();
1003     //alignSize(m, n)返回n的倍数大于等于m的最小值
1004     padding.width = (int)alignSize(std::max(padding.width, 0), cacheStride.width);
1005     padding.height = (int)alignSize(std::max(padding.height, 0), cacheStride.height);
1006     Size paddedImgSize(img.cols + padding.width*2, img.rows + padding.height*2);
1007 
1008     HOGCache cache(this, img, padding, padding, nwindows == 0, cacheStride);
1009 
1010     if( !nwindows )
1011         //Mat::area()表示为Mat的面积
1012         nwindows = cache.windowsInImage(paddedImgSize, winStride).area();
1013 
1014     const HOGCache::BlockData* blockData = &cache.blockData[0];
1015 
1016     int nblocks = cache.nblocks.area();
1017     int blockHistogramSize = cache.blockHistogramSize;
1018     size_t dsize = getDescriptorSize();//一个hog的描述长度
1019     //resize()为改变矩阵的行数,如果减少矩阵的行数则只保留减少后的
1020     //那些行,如果是增加行数,则保留所有的行。
1021     //这里将描述子长度扩展到整幅图片
1022     descriptors.resize(dsize*nwindows);
1023 
1024     for( size_t i = 0; i < nwindows; i++ )
1025     {
1026         //descriptor为第i个检测窗口的描述子首位置。
1027         float* descriptor = &descriptors[i*dsize];
1028        
1029         Point pt0;
1030         //非空
1031         if( !locations.empty() )
1032         {
1033             pt0 = locations[i];
1034             //非法的点
1035             if( pt0.x < -padding.width || pt0.x > img.cols + padding.width - winSize.width ||
1036                 pt0.y < -padding.height || pt0.y > img.rows + padding.height - winSize.height )
1037                 continue;
1038         }
1039         //locations为空
1040         else
1041         {
1042             //pt0为没有扩充前图像对应的第i个检测窗口
1043             pt0 = cache.getWindow(paddedImgSize, winStride, (int)i).tl() - Point(padding);
1044             CV_Assert(pt0.x % cacheStride.width == 0 && pt0.y % cacheStride.height == 0);
1045         }
1046 
1047         for( int j = 0; j < nblocks; j++ )
1048         {
1049             const HOGCache::BlockData& bj = blockData[j];
1050             //pt为block的左上角相对检测图片的坐标
1051             Point pt = pt0 + bj.imgOffset;
1052 
1053             //dst为该block在整个测试图片的描述子的位置
1054             float* dst = descriptor + bj.histOfs;
1055             const float* src = cache.getBlock(pt, dst);
1056             if( src != dst )
1057 #ifdef HAVE_IPP
1058                ippsCopy_32f(src,dst,blockHistogramSize);
1059 #else
1060                 for( int k = 0; k < blockHistogramSize; k++ )
1061                     dst[k] = src[k];
1062 #endif
1063         }
1064     }
1065 }
1066 
1067 
1068 void HOGDescriptor::detect(const Mat& img,
1069     vector<Point>& hits, vector<double>& weights, double hitThreshold, 
1070     Size winStride, Size padding, const vector<Point>& locations) const
1071 {
1072     //hits里面存的是符合检测到目标的窗口的左上角顶点坐标
1073     hits.clear();
1074     if( svmDetector.empty() )
1075         return;
1076 
1077     if( winStride == Size() )
1078         winStride = cellSize;
1079     Size cacheStride(gcd(winStride.width, blockStride.width),
1080                      gcd(winStride.height, blockStride.height));
1081     size_t nwindows = locations.size();
1082     padding.width = (int)alignSize(std::max(padding.width, 0), cacheStride.width);
1083     padding.height = (int)alignSize(std::max(padding.height, 0), cacheStride.height);
1084     Size paddedImgSize(img.cols + padding.width*2, img.rows + padding.height*2);
1085 
1086     HOGCache cache(this, img, padding, padding, nwindows == 0, cacheStride);
1087 
1088     if( !nwindows )
1089         nwindows = cache.windowsInImage(paddedImgSize, winStride).area();
1090 
1091     const HOGCache::BlockData* blockData = &cache.blockData[0];
1092 
1093     int nblocks = cache.nblocks.area();
1094     int blockHistogramSize = cache.blockHistogramSize;
1095     size_t dsize = getDescriptorSize();
1096 
1097     double rho = svmDetector.size() > dsize ? svmDetector[dsize] : 0;
1098     vector<float> blockHist(blockHistogramSize);
1099 
1100     for( size_t i = 0; i < nwindows; i++ )
1101     {
1102         Point pt0;
1103         if( !locations.empty() )
1104         {
1105             pt0 = locations[i];
1106             if( pt0.x < -padding.width || pt0.x > img.cols + padding.width - winSize.width ||
1107                 pt0.y < -padding.height || pt0.y > img.rows + padding.height - winSize.height )
1108                 continue;
1109         }
1110         else
1111         {
1112             pt0 = cache.getWindow(paddedImgSize, winStride, (int)i).tl() - Point(padding);
1113             CV_Assert(pt0.x % cacheStride.width == 0 && pt0.y % cacheStride.height == 0);
1114         }
1115         double s = rho;
1116         //svmVec指向svmDetector最前面那个元素
1117         const float* svmVec = &svmDetector[0];
1118 #ifdef HAVE_IPP
1119         int j;
1120 #else
1121         int j, k;
1122 #endif
1123         for( j = 0; j < nblocks; j++, svmVec += blockHistogramSize )
1124         {
1125             const HOGCache::BlockData& bj = blockData[j];
1126             Point pt = pt0 + bj.imgOffset;
1127             
1128             //vec为测试图片pt处的block贡献的描述子指针
1129             const float* vec = cache.getBlock(pt, &blockHist[0]);
1130 #ifdef HAVE_IPP
1131             Ipp32f partSum;
1132             ippsDotProd_32f(vec,svmVec,blockHistogramSize,&partSum);
1133             s += (double)partSum;
1134 #else
1135             for( k = 0; k <= blockHistogramSize - 4; k += 4 )
1136                 //const float* svmVec = &svmDetector[0];
1137                 s += vec[k]*svmVec[k] + vec[k+1]*svmVec[k+1] +
1138                     vec[k+2]*svmVec[k+2] + vec[k+3]*svmVec[k+3];
1139             for( ; k < blockHistogramSize; k++ )
1140                 s += vec[k]*svmVec[k];
1141 #endif
1142         }
1143         if( s >= hitThreshold )
1144         {
1145             hits.push_back(pt0);
1146             weights.push_back(s);
1147         }
1148     }
1149 }
1150 
1151 //不用保留检测到目标的可信度,即权重
1152 void HOGDescriptor::detect(const Mat& img, vector<Point>& hits, double hitThreshold, 
1153                            Size winStride, Size padding, const vector<Point>& locations) const
1154 {
1155     vector<double> weightsV;
1156     detect(img, hits, weightsV, hitThreshold, winStride, padding, locations);
1157 }
1158 
1159 struct HOGInvoker
1160 {
1161     HOGInvoker( const HOGDescriptor* _hog, const Mat& _img,
1162                 double _hitThreshold, Size _winStride, Size _padding,
1163                 const double* _levelScale, ConcurrentRectVector* _vec, 
1164                 ConcurrentDoubleVector* _weights=0, ConcurrentDoubleVector* _scales=0 ) 
1165     {
1166         hog = _hog;
1167         img = _img;
1168         hitThreshold = _hitThreshold;
1169         winStride = _winStride;
1170         padding = _padding;
1171         levelScale = _levelScale;
1172         vec = _vec;
1173         weights = _weights;
1174         scales = _scales;
1175     }
1176 
1177     void operator()( const BlockedRange& range ) const
1178     {
1179         int i, i1 = range.begin(), i2 = range.end();
1180         double minScale = i1 > 0 ? levelScale[i1] : i2 > 1 ? levelScale[i1+1] : std::max(img.cols, img.rows);
1181         //将原图片进行缩放
1182         Size maxSz(cvCeil(img.cols/minScale), cvCeil(img.rows/minScale));
1183         Mat smallerImgBuf(maxSz, img.type());
1184         vector<Point> locations;
1185         vector<double> hitsWeights;
1186 
1187         for( i = i1; i < i2; i++ )
1188         {
1189             double scale = levelScale[i];
1190             Size sz(cvRound(img.cols/scale), cvRound(img.rows/scale));
1191             //smallerImg只是构造一个指针,并没有复制数据
1192             Mat smallerImg(sz, img.type(), smallerImgBuf.data);
1193             //没有尺寸缩放
1194             if( sz == img.size() )
1195                 smallerImg = Mat(sz, img.type(), img.data, img.step);
1196             //有尺寸缩放
1197             else
1198                 resize(img, smallerImg, sz);
1199             //该函数实际上是将返回的值存在locations和histWeights中
1200             //其中locations存的是目标区域的左上角坐标
1201             hog->detect(smallerImg, locations, hitsWeights, hitThreshold, winStride, padding);
1202             Size scaledWinSize = Size(cvRound(hog->winSize.width*scale), cvRound(hog->winSize.height*scale));
1203             for( size_t j = 0; j < locations.size(); j++ )
1204             {
1205                 //保存目标区域
1206                 vec->push_back(Rect(cvRound(locations[j].x*scale),
1207                                     cvRound(locations[j].y*scale),
1208                                     scaledWinSize.width, scaledWinSize.height));
1209                 //保存缩放尺寸
1210                 if (scales) {
1211                     scales->push_back(scale);
1212                 }
1213             }
1214             //保存svm计算后的结果值
1215             if (weights && (!hitsWeights.empty()))
1216             {
1217                 for (size_t j = 0; j < locations.size(); j++)
1218                 {
1219                     weights->push_back(hitsWeights[j]);
1220                 }
1221             }        
1222         }
1223     }
1224 
1225     const HOGDescriptor* hog;
1226     Mat img;
1227     double hitThreshold;
1228     Size winStride;
1229     Size padding;
1230     const double* levelScale;
1231     //typedef tbb::concurrent_vector<Rect> ConcurrentRectVector;
1232     ConcurrentRectVector* vec;
1233     //typedef tbb::concurrent_vector<double> ConcurrentDoubleVector;
1234     ConcurrentDoubleVector* weights;
1235     ConcurrentDoubleVector* scales;
1236 };
1237 
1238 
1239 void HOGDescriptor::detectMultiScale(
1240     const Mat& img, vector<Rect>& foundLocations, vector<double>& foundWeights,
1241     double hitThreshold, Size winStride, Size padding,
1242     double scale0, double finalThreshold, bool useMeanshiftGrouping) const  
1243 {
1244     double scale = 1.;
1245     int levels = 0;
1246 
1247     vector<double> levelScale;
1248 
1249     //nlevels默认的是64层
1250     for( levels = 0; levels < nlevels; levels++ )
1251     {
1252         levelScale.push_back(scale);
1253         if( cvRound(img.cols/scale) < winSize.width ||
1254             cvRound(img.rows/scale) < winSize.height ||
1255             scale0 <= 1 )
1256             break;
1257         //只考虑测试图片尺寸比检测窗口尺寸大的情况
1258         scale *= scale0;
1259     }
1260     levels = std::max(levels, 1);
1261     levelScale.resize(levels);
1262 
1263     ConcurrentRectVector allCandidates;
1264     ConcurrentDoubleVector tempScales;
1265     ConcurrentDoubleVector tempWeights;
1266     vector<double> foundScales;
1267     
1268     //TBB并行计算
1269     parallel_for(BlockedRange(0, (int)levelScale.size()),
1270                  HOGInvoker(this, img, hitThreshold, winStride, padding, &levelScale[0], &allCandidates, &tempWeights, &tempScales));
1271     //将tempScales中的内容复制到foundScales中;back_inserter是指在指定参数迭代器的末尾插入数据
1272     std::copy(tempScales.begin(), tempScales.end(), back_inserter(foundScales));
1273     //容器的clear()方法是指移除容器中所有的数据
1274     foundLocations.clear();
1275     //将候选目标窗口保存在foundLocations中
1276     std::copy(allCandidates.begin(), allCandidates.end(), back_inserter(foundLocations));
1277     foundWeights.clear();
1278     //将候选目标可信度保存在foundWeights中
1279     std::copy(tempWeights.begin(), tempWeights.end(), back_inserter(foundWeights));
1280 
1281     if ( useMeanshiftGrouping )
1282     {
1283         groupRectangles_meanshift(foundLocations, foundWeights, foundScales, finalThreshold, winSize);
1284     }
1285     else
1286     {
1287         //对矩形框进行聚类
1288         groupRectangles(foundLocations, (int)finalThreshold, 0.2);
1289     }
1290 }
1291 
1292 //不考虑目标的置信度
1293 void HOGDescriptor::detectMultiScale(const Mat& img, vector<Rect>& foundLocations, 
1294                                      double hitThreshold, Size winStride, Size padding,
1295                                      double scale0, double finalThreshold, bool useMeanshiftGrouping) const  
1296 {
1297     vector<double> foundWeights;
1298     detectMultiScale(img, foundLocations, foundWeights, hitThreshold, winStride, 
1299                      padding, scale0, finalThreshold, useMeanshiftGrouping);
1300 }
1301 
1302 typedef RTTIImpl<HOGDescriptor> HOGRTTI;
1303 
1304 CvType hog_type( CV_TYPE_NAME_HOG_DESCRIPTOR, HOGRTTI::isInstance,
1305                  HOGRTTI::release, HOGRTTI::read, HOGRTTI::write, HOGRTTI::clone);
1306 
1307 vector<float> HOGDescriptor::getDefaultPeopleDetector()
1308 {
1309     static const float detector[] = {
1310        0.05359386f, -0.14721455f, -0.05532170f, 0.05077307f,
1311        0.11547081f, -0.04268804f, 0.04635834f, ........
1312   };
1313        //返回detector数组的从头到尾构成的向量
1314     return vector<float>(detector, detector + sizeof(detector)/sizeof(detector[0]));
1315 }
1316 //This function renurn 1981 SVM coeffs obtained from daimler's base. 
1317 //To use these coeffs the detection window size should be (48,96)  
1318 vector<float> HOGDescriptor::getDaimlerPeopleDetector()
1319 {
1320     static const float detector[] = {
1321         0.294350f, -0.098796f, -0.129522f, 0.078753f,
1322         0.387527f, 0.261529f, 0.145939f, 0.061520f,
1323       ........
1324         };
1325         //返回detector的首尾构成的向量
1326         return vector<float>(detector, detector + sizeof(detector)/sizeof(detector[0]));
1327 }
1328 
1329 }

objdetect.hpp中关于hog的部分:

1 //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
  2 
  3 struct CV_EXPORTS_W HOGDescriptor
  4 {
  5 public:
  6     enum { L2Hys=0 };
  7     enum { DEFAULT_NLEVELS=64 };
  8 
  9     CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
 10         cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
 11         histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
 12         nlevels(HOGDescriptor::DEFAULT_NLEVELS)
 13     {}
 14 
 15     //可以用构造函数的参数来作为冒号外的参数初始化传入,这样定义该类的时候,一旦变量分配了
 16     //内存,则马上会被初始化,而不用等所有变量分配完内存后再初始化。
 17     CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
 18                   Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
 19                   int _histogramNormType=HOGDescriptor::L2Hys,
 20                   double _L2HysThreshold=0.2, bool _gammaCorrection=false,
 21                   int _nlevels=HOGDescriptor::DEFAULT_NLEVELS)
 22     : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
 23     nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
 24     histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
 25     gammaCorrection(_gammaCorrection), nlevels(_nlevels)
 26     {}
 27 
 28     //可以导入文本文件进行初始化
 29     CV_WRAP HOGDescriptor(const String& filename)
 30     {
 31         load(filename);
 32     }
 33 
 34     HOGDescriptor(const HOGDescriptor& d)
 35     {
 36         d.copyTo(*this);
 37     }
 38 
 39     virtual ~HOGDescriptor() {}
 40 
 41     //size_t是一个long unsigned int型
 42     CV_WRAP size_t getDescriptorSize() const;
 43     CV_WRAP bool checkDetectorSize() const;
 44     CV_WRAP double getWinSigma() const;
 45 
 46     //virtual为虚函数,在指针或引用时起函数多态作用
 47     CV_WRAP virtual void setSVMDetector(InputArray _svmdetector);
 48 
 49     virtual bool read(FileNode& fn);
 50     virtual void write(FileStorage& fs, const String& objname) const;
 51 
 52     CV_WRAP virtual bool load(const String& filename, const String& objname=String());
 53     CV_WRAP virtual void save(const String& filename, const String& objname=String()) const;
 54     virtual void copyTo(HOGDescriptor& c) const;
 55 
 56     CV_WRAP virtual void compute(const Mat& img,
 57                          CV_OUT vector<float>& descriptors,
 58                          Size winStride=Size(), Size padding=Size(),
 59                          const vector<Point>& locations=vector<Point>()) const;
 60     //with found weights output
 61     CV_WRAP virtual void detect(const Mat& img, CV_OUT vector<Point>& foundLocations,
 62                         CV_OUT vector<double>& weights,
 63                         double hitThreshold=0, Size winStride=Size(),
 64                         Size padding=Size(),
 65                         const vector<Point>& searchLocations=vector<Point>()) const;
 66     //without found weights output
 67     virtual void detect(const Mat& img, CV_OUT vector<Point>& foundLocations,
 68                         double hitThreshold=0, Size winStride=Size(),
 69                         Size padding=Size(),
 70                         const vector<Point>& searchLocations=vector<Point>()) const;
 71     //with result weights output
 72     CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations,
 73                                   CV_OUT vector<double>& foundWeights, double hitThreshold=0,
 74                                   Size winStride=Size(), Size padding=Size(), double scale=1.05,
 75                                   double finalThreshold=2.0,bool useMeanshiftGrouping = false) const;
 76     //without found weights output
 77     virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations,
 78                                   double hitThreshold=0, Size winStride=Size(),
 79                                   Size padding=Size(), double scale=1.05,
 80                                   double finalThreshold=2.0, bool useMeanshiftGrouping = false) const;
 81 
 82     CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs,
 83                                  Size paddingTL=Size(), Size paddingBR=Size()) const;
 84 
 85     CV_WRAP static vector<float> getDefaultPeopleDetector();
 86     CV_WRAP static vector<float> getDaimlerPeopleDetector();
 87 
 88     CV_PROP Size winSize;
 89     CV_PROP Size blockSize;
 90     CV_PROP Size blockStride;
 91     CV_PROP Size cellSize;
 92     CV_PROP int nbins;
 93     CV_PROP int derivAperture;
 94     CV_PROP double winSigma;
 95     CV_PROP int histogramNormType;
 96     CV_PROP double L2HysThreshold;
 97     CV_PROP bool gammaCorrection;
 98     CV_PROP vector<float> svmDetector;
 99     CV_PROP int nlevels;
100 };

 

自己学习所得,欢迎批评和交流
参考文献:
[1] Dalal N, Triggs B. Histograms of oriented gradients for humandetection[C]//Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEEComputer Society Conference on. IEEE, 2005, 1: 886-893.
[2] 黄冬丽, 戴健文, 冯超, 等. HOG 特征提取中的三线性插值算法[J]. 电脑知识与技术: 学术交流, 2012, 8(11): 7548-7551.

 https://blog.csdn.net/gy429476195/article/details/50156813

https://blog.csdn.net/zhanghenan123/article/details/80853523

https://blog.csdn.net/huguohu2006/article/details/48681287

https://blog.csdn.net/sinat_34604992/article/details/53933004

 

posted @ 2020-03-05 19:56  无趣的鱼  阅读(10835)  评论(0编辑  收藏  举报