和项目组研究计算几何

一,凸包

二维凸包:可用极角排序后每次倍增一个点看是否在栈顶两个点内侧,在内侧就加入栈,否则弹出一个。优化是在省去了计算极角的计算量,采用xy排序,从x最小倍增一遍求上边界,再从x最大反过来求下边界。二维凸包构造想法比较简单。

凸多边形有一些有趣的性质

 

设边数为n

内角和 =(n-2)×180°

 

外角和 = 360°

 

对角线的条数=C(n,2)-n=n(n-3)/2

欧拉公式 凸多边形有n个点,m条边,r个面,则 n - m + r = 2

 

 

1.POJ1113 注意精度,这里有个公式 城堡围墙长度最小值 = 城堡顶点坐标构成的散点集的凸包总边长 + 半径为L的圆周长

#include<iostream>
#include <algorithm>
#include<math.h>
using namespace std;
#define eps 1e-8
const double PI = acos(-1.0);
struct point {
    double x, y;
    point() {
    }
    point(int a, int b) {
        x = a, y = b;
    }
};

int sgn(double a) {
    if (fabs(a) < eps)
        return 0;
    if (a > eps)
        return 1;
    return -1;
}
double dis(point a, point b) {
    return sqrt((b.x - a.x) * (b.x - a.x) + (b.y - a.y) * (b.y - a.y));
}

double cross(point op, point sp, point ep) {
    return (sp.x - op.x) * (ep.y - op.y) - (ep.x - op.x) * (sp.y - op.y);
}
int cmp(point a, point b) {
    return (a.y == b.y) ? (a.x < b.x) : a.y < b.y;
}
double graham(point pnt[], int n, point res[]) {
    int i, len, top = 1;
    sort(pnt, pnt + n, cmp);
    res[0] = pnt[0];
    res[1] = pnt[1];
    for (i = 2; i < n; i++) {
        while (top && sgn(cross(pnt[i], res[top], res[top - 1])) >= 0)
            top--;
        res[++top] = pnt[i];
    }
    len = top;
    for (i = n - 2; i >= 0; i--) {
        while (top != len && sgn(cross(pnt[i], res[top], res[top - 1])) >= 0)
            top--;
        res[++top] = pnt[i];
    }
    res[top] = res[0];
    double ans = 0;
    for (int p = 0; p < top; p++) {
        ans += dis(res[p], res[p + 1]);
    }
    return ans;
}

int main() {
//    freopen("data3.txt", "r", stdin);
    point pnt[50003], res[50003];
    int i, n;
    double L;
    while (scanf("%d%lf", &n, &L) != EOF) {
        if (n == 2) {
            for (i = 0; i < 2; i++)
                scanf("%lf%lf", &pnt[i].x, &pnt[i].y);
            printf("%.0lf\n", dis(pnt[0], pnt[1]) + L * 2 * PI);
            continue;
        }
        for (i = 0; i < n; i++)
            scanf("%lf%lf", &pnt[i].x, &pnt[i].y);
        printf("%.0lf\n", graham(pnt, n, res) + L * 2 * PI);
    }
    return 0;
}

 2.HDU 1872 枚举状态,使用位运算

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <iostream>
using namespace std;
#define MAXN 20
int N;
#define eps 1e-8
const double PI = acos(-1.0);

struct point {
    double x, y;
    point() {
    }
    point(double a, double b) {
        x = a, y = b;
    }
};
struct Node {
    point pos;
    int val, len;
} tree[MAXN];
int sgn(double a) {
    if (fabs(a) < eps)
        return 0;
    if (a > eps)
        return 1;
    return -1;
}
double dis(point a, point b) {
    return sqrt((b.x - a.x) * (b.x - a.x) + (b.y - a.y) * (b.y - a.y));
}

double cross(point op, point sp, point ep) {
    return (sp.x - op.x) * (ep.y - op.y) - (ep.x - op.x) * (sp.y - op.y);
}
int cmp(point a, point b) {
    if (a.y < b.y)
        return 1;
    if (a.y == b.y)
        if (a.x < b.x)
            return 1;
    return 0;
}
double graham(point pnt[], int n) {
    point res[MAXN];
    int i, len, top = 1;
    sort(pnt, pnt + n, cmp);
    res[0] = pnt[0];
    res[1] = pnt[1];
    for (i = 2; i < n; i++) {
        while (top && sgn(cross(pnt[i], res[top], res[top - 1])) >= 0)
            top--;
        res[++top] = pnt[i];
    }
    len = top;

    for (i = n - 2; i >= 0; i--) {
        while (top != len && sgn(cross(pnt[i], res[top], res[top - 1])) >= 0)
            top--;
        res[++top] = pnt[i];
    }
    res[top] = res[0];
    double ans = 0;
    for (int p = 0; p < top; p++) {
        ans += dis(res[p], res[p + 1]);
    }
    return ans;
}
struct Ans {
    int bit;
    double ex_len;
    Ans() {
        bit = 0, ex_len = 0;
    }
};
int main() {
//    freopen("data3.txt", "r", stdin);
    point pnt[MAXN];
    int tot;
    int min_val, min_num;
    int cas = 1;
    while (scanf("%d", &N) && N) {
        if (cas > 1)
            puts("");
        printf("Forest %d\n", cas++);
        Ans ans;
        min_val = min_num = 0x3fffffff;
        for (int i = 0; i < N; i++) {
            scanf("%lf%lf%d%d", &tree[i].pos.x, &tree[i].pos.y, &tree[i].val,
                    &tree[i].len);
        }
        int cut_len, cut_val;
        for (int bit = 0; bit < (1 << N); bit++) {
            cut_len = cut_val = tot = 0;
            for (int j = 0; j < N; j++) {
                if (bit & (1 << j)) {
                    cut_len += tree[j].len;
                    cut_val += tree[j].val;
                } else {
                    pnt[tot].x = tree[j].pos.x, pnt[tot++].y = tree[j].pos.y;
                }
            }
            if (cut_val > min_val)
                continue;
            double need_len = graham(pnt, tot);
            if (need_len <= cut_len) {
                if (min_val > cut_val
                        || (min_val == cut_val && N - tot < min_num)) {
                    min_val = cut_val, min_num = N - tot;
                    ans.bit = bit;
                    ans.ex_len = cut_len - need_len;
                }
            }
        }
        printf("Cut these trees:");
        for (int i = 0; i < N; i++)
            if (ans.bit & 1 << i)
                printf(" %d", i + 1);
        puts("");
        printf("Extra wood: %.2lf\n", ans.ex_len);
    }
    return 0;
}

 

三维凸包 倍增思想

#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;

const int MAXN = 505;
const double eps = 1e-8;

int zero(double x) {
    if (fabs(x) < eps)
        return 0;
    return (x > eps) ? 1 : -1;
}
struct Point {
    double x, y, z;
    Point() {
    }
    Point(double xx, double yy, double zz) :
            x(xx), y(yy), z(zz) {
    }
    Point operator -(const Point p1) {  //两向量之差
        return Point(x - p1.x, y - p1.y, z - p1.z);
    }
    Point operator *(Point p) {   //叉乘
        return Point(y * p.z - z * p.y, z * p.x - x * p.z, x * p.y - y * p.x);
    }
    double operator ^(Point p) { //点乘
        return (x * p.x + y * p.y + z * p.z);
    }
};

struct CH3D {
    struct face {
        int a, b, c; //凸包一个面上三个点的编号
        bool ok;  //表示该面是否属于最终凸包中的面
    };
    int n;   //顶点数
    Point P[MAXN];  //初始顶点

    int triangle_num;  //凸包表面的三角形数
    face F[8 * MAXN];

    int g[MAXN][MAXN]; //凸包表面的三角形

    double vlen(Point a) {
        return sqrt(a.x * a.x + a.y * a.y + a.z * a.z);
    }
    Point cross(const Point &a, const Point &b, const Point &c) {
        return Point((b.y - a.y) * (c.z - a.z) - (b.z - a.z) * (c.y - a.y),
                -((b.x - a.x) * (c.z - a.z) - (b.z - a.z) * (c.x - a.x)),
                (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x));
    }
    //三角形面积*2
    double area(Point a, Point b, Point c) {
        return vlen((b - a) * (c - a));
    }
    //四面体a到其他三点有向距离有向体积*6
    double volume(Point a, Point b, Point c, Point d) {
        return (b - a) * (c - a) ^ (d - a);
    }
    //点在面同向返回正数
    int dblcmp(Point &p, face &f) {
        double v = volume(P[f.a], P[f.b], P[f.c], p);
        if (fabs(v) < eps)
            return 0;
        return (v > eps) ? 1 : -1;
    }
    void deal(int p, int a, int b) {
        int f = g[a][b];
        face add;
        if (F[f].ok) {
            if (dblcmp(P[p], F[f]) > 0)
                dfs(p, f);
            else {
                add.a = b;
                add.b = a;
                add.c = p;
                add.ok = 1;
                g[p][b] = g[a][p] = g[b][a] = triangle_num;
                F[triangle_num++] = add;
            }
        }
    }
    void dfs(int p, int now) {
        F[now].ok = 0;
        deal(p, F[now].b, F[now].a);
        deal(p, F[now].c, F[now].b);
        deal(p, F[now].a, F[now].c);
    }
    //调整使前四个点不共面
    bool check_4point() {
        int i, flag = 1;
        for (i = 1; i < n; i++) {
            if (vlen(P[0] - P[i]) > eps) {
                swap(P[1], P[i]);
                flag = 0;
                break;
            }
        }
        if (flag)
            return 0;
        flag = 1;
        for (i = 2; i < n; i++) {
            if (vlen((P[0] - P[1]) * (P[1] - P[i])) > eps) {
                swap(P[2], P[i]);
                flag = 0;
                break;
            }
        }
        if (flag)
            return 0;
        flag = 1;
        for (i = 3; i < n; i++) {
            if (fabs((P[0] - P[1]) * (P[1] - P[2]) ^ (P[0] - P[i])) > eps) {
                swap(P[3], P[i]);
                return 1;
            }
        }
        return 0;
    }
    //构建三维凸包
    void build() {
        int i, j, tmp;
        face add;
        triangle_num = 0;
        if (n < 4)
            return;
        if (!check_4point()) //调整前4个点,找不到不共面4个点则无法构建凸包; 若以保证,则可去掉
            return;
        for (i = 0; i < 4; i++) { //根据前4个点产生4个三角面
            add.a = (i + 1) % 4;
            add.b = (i + 2) % 4;
            add.c = (i + 3) % 4;
            add.ok = 1;
            if (dblcmp(P[i], add) > 0)
                swap(add.b, add.c);
            g[add.a][add.b] = g[add.b][add.c] = g[add.c][add.a] = triangle_num;
            F[triangle_num++] = add;
        }
        for (i = 4; i < n; i++) {
            for (j = 0; j < triangle_num; j++) {
                if (F[j].ok && dblcmp(P[i], F[j]) > 0) {
                    dfs(i, j);
                    break;
                }
            }
        }
        tmp = triangle_num;
        for (i = triangle_num = 0; i < tmp; i++)
            if (F[i].ok) {
                F[triangle_num++] = F[i];
            }
    }
    //三维凸包表面积
    double area() {
        double res = 0.0;
        if (n == 3) {
            Point p = cross(P[0], P[1], P[2]);
            res = vlen(p) / 2.0;
            return res;
        }
        for (int i = 0; i < triangle_num; i++)
            res += fabs(area(P[F[i].a], P[F[i].b], P[F[i].c]));
        return res / 2.0;
    }
    //三维凸包体积
    double volume() {
        double res = 0.0;
        Point tmp(0, 0, 0);
        for (int i = 0; i < triangle_num; i++)
            res += volume(tmp, P[F[i].a], P[F[i].b], P[F[i].c]);
        return fabs(res / 6.0);
    }
    //判断两个三角形共面
    bool same(int s, int t) {
        Point a = P[F[s].a];
        Point b = P[F[s].b];
        Point c = P[F[s].c];
        return !zero(volume(a, b, c, P[F[t].a]))
                && !zero(volume(a, b, c, P[F[t].b]))
                && !zero(volume(a, b, c, P[F[t].c]));
    }
    //三维凸包表面多边形个数
    int polygon() {
        int i, j, res, flag;
        for (i = res = 0; i < triangle_num; i++) {
            flag = 1;
            for (j = 0; j < i; j++)
                if (same(i, j)) {
                    flag = 0;
                    break;
                }
            res += flag;
        }
        return res;
    }
};

CH3D hull;

int main() {
//    freopen("data2.txt", "r", stdin);
    while (~scanf("%d", &hull.n)) {
        for (int i = 0; i < hull.n; i++)
            scanf("%lf%lf%lf", &hull.P[i].x, &hull.P[i].y, &hull.P[i].z);
        hull.build();
        printf("%d\n", hull.polygon());
//        res = hull.area();
//        printf("%.3lf\n", res);
    }
    return 0;
}

 

 

 

二,半平面

对所有线极角排序去重,之后维护一个直线双向栈,倍增一条线时,检查双向栈两端栈顶两条线的交点是否在新线内侧,内侧就加入栈,否则弹出一条线,最后双向栈中的各条线组成图形的核,可以在这个区域里看到原图形的每一个位置。用这个求内切的最大的圆,就是把各边按二分半径收缩后看是否还存在核的最大半径即解。

 

#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;

const double eps = 1e-8;
const int maxn = 105;

int deq[maxn], tail, head, order[maxn], ln ,pn;

struct Point {
    double x, y;
} p[maxn];

struct Line {
    Point a, b;
    double angle;
} l[maxn];

int sgn(double a){
    if(fabs(a)<eps) return 0;
    if(a>eps) return 1;
    return -1;
}

int cross(Point op, Point sp, Point ep)
{
    return (sp.x-op.x) * (ep.y-op.y) - (ep.x-op.x) * (sp.y-op.y);
}

bool cmp(int u, int v) {
    int d = sgn(l[u].angle-l[v].angle);
    if (!d) return sgn(cross(l[u].a, l[v].a, l[v].b)) < 0; //极角相同时,只保留最靠里面的那条,将更靠半平面里面的放在前面去重时删除
    return d < 0;
}

void getIntersect(Line l1, Line l2, Point& p) { //求两线交点
    double dot1,dot2;
    dot1 = cross(l2.a, l1.b, l1.a);
    dot2 = cross(l1.b, l2.b, l1.a);
    p.x = (l2.a.x * dot2 + l2.b.x * dot1) / (dot2 + dot1);
    p.y = (l2.a.y * dot2 + l2.b.y * dot1) / (dot2 + dot1);
}

bool judge(Line l0, Line l1, Line l2) {
    Point p;
    getIntersect(l1, l2, p);
    return sgn(cross(p, l0.a, l0.b)) > 0; //大于小于符号与上面cmp()中注释处相反
}

bool halfPlaneIntersection() {
    int i, j;
    for (i = 0; i < ln; i++) order[i] = i;
    sort(order, order+ln, cmp);
    for (i = 1, j = 0; i < ln; i++)
        if (sgn(l[order[i]].angle-l[order[j]].angle) > 0)
            order[++j] = order[i];
    ln = j + 1;
    deq[0] = order[0];
    deq[1] = order[1];
    head = 0;
    tail = 1;
    for (i = 2; i < ln; i++) {
        while (head < tail && judge(l[order[i]], l[deq[tail-1]], l[deq[tail]])) tail--;
        while (head < tail && judge(l[order[i]], l[deq[head+1]], l[deq[head]])) head++;
        deq[++tail] = order[i];
    }
    while (head < tail && judge(l[deq[head]], l[deq[tail-1]], l[deq[tail]])) tail--;
    while (head < tail && judge(l[deq[tail]], l[deq[head+1]], l[deq[head]])) head++;
    if (head + 1 >= tail) return 0;
    //求出核多边形点p[]
    deq[++tail] = deq[head];
    for(pn=0,i=head;i<tail;i++,pn++)
        getIntersect(l[deq[i]],l[deq[i+1]],p[pn]);
    return 1;
}
int main(){
    //freopen("data.txt","r",stdin);
    int N,i;
    int cnt=1;
    while(scanf("%d",&N)&&N){
        if(cnt>1) printf("\n");
        printf("Floor #%d\n",cnt++);
        for(i=0;i<N;i++)
            scanf("%lf%lf",&p[i].x,&p[i].y);
        for(i=1;i<N;i++){
            l[i-1].a=p[i-1],l[i-1].b=p[i];
            l[i-1].angle = atan2(p[i].y-p[i-1].y, p[i].x-p[i-1].x); //atan2(dy, dx)返回弧度取值范围为-PI到PI
        }
        l[N-1].a=p[N-1],l[N-1].b=p[0];
        l[N-1].angle = atan2(p[0].y-p[N-1].y, p[0].x-p[N-1].x);
        ln=N;
        if(halfPlaneIntersection()) printf("Surveillance is possible.\n");
        else printf("Surveillance is impossible.\n");
    }
return 0;
}

 

 

三,三维几何 线段

与二维相似综合使用点乘叉乘计算,三维的叉乘比较特殊,两个向量的叉乘为垂直这两个向量的向量,根据这个性质适合求法线,四面体的高等等。和二维一样,点乘判垂直,叉乘判平行,点乘另一个应用是求一个向量在另一个单位向量上的投影长度。

HDU 4741

//三维几何函数库
#include <math.h>
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps)
struct point3{double x,y,z;};
struct line3{point3 a,b;};
struct plane3{point3 a,b,c;};

//计算叉积 U x V
point3 xmult(point3 u,point3 v){
    point3 ret;
    ret.x=u.y*v.z-v.y*u.z;
    ret.y=u.z*v.x-u.x*v.z;
    ret.z=u.x*v.y-u.y*v.x;
    return ret;
}

//计算点积 U . V
double dmult(point3 u,point3 v){
    return u.x*v.x+u.y*v.y+u.z*v.z;
}

//矢量差 U - V
point3 subt(point3 u,point3 v){
    point3 ret;
    ret.x=u.x-v.x;
    ret.y=u.y-v.y;
    ret.z=u.z-v.z;
    return ret;
}
//矢量和 U + V
point3 plusv(point3 u, point3 v) {
    point3 ret;
    ret.x = u.x + v.x;
    ret.y = u.y + v.y;
    ret.z = u.z + v.z;
    return ret;
}
//取平面法向量
point3 pvec(plane3 s){
    return xmult(subt(s.a,s.b),subt(s.b,s.c));
}
point3 pvec(point3 s1,point3 s2,point3 s3){
    return xmult(subt(s1,s2),subt(s2,s3));
}

//两点距离,单参数取向量大小
double distance(point3 p1,point3 p2){
    return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)+(p1.z-p2.z)*(p1.z-p2.z));
}

//向量大小
double vlen(point3 p){
    return sqrt(p.x*p.x+p.y*p.y+p.z*p.z);
}

//判三点共线
int dots_inline(point3 p1,point3 p2,point3 p3){
    return vlen(xmult(subt(p1,p2),subt(p2,p3)))<eps;
}

//判四点共面
int dots_onplane(point3 a,point3 b,point3 c,point3 d){
    return zero(dmult(pvec(a,b,c),subt(d,a)));
}

//判点是否在线段上,包括端点和共线
int dot_online_in(point3 p,line3 l){
    return zero(vlen(xmult(subt(p,l.a),subt(p,l.b))))&&(l.a.x-p.x)*(l.b.x-p.x)<eps&&
        (l.a.y-p.y)*(l.b.y-p.y)<eps&&(l.a.z-p.z)*(l.b.z-p.z)<eps;
}
int dot_online_in(point3 p,point3 l1,point3 l2){
    return zero(vlen(xmult(subt(p,l1),subt(p,l2))))&&(l1.x-p.x)*(l2.x-p.x)<eps&&
        (l1.y-p.y)*(l2.y-p.y)<eps&&(l1.z-p.z)*(l2.z-p.z)<eps;
}

//判点是否在线段上,不包括端点
int dot_online_ex(point3 p,line3 l){
    return dot_online_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y)||!zero(p.z-l.a.z))&&
        (!zero(p.x-l.b.x)||!zero(p.y-l.b.y)||!zero(p.z-l.b.z));
}
int dot_online_ex(point3 p,point3 l1,point3 l2){
    return dot_online_in(p,l1,l2)&&(!zero(p.x-l1.x)||!zero(p.y-l1.y)||!zero(p.z-l1.z))&&
        (!zero(p.x-l2.x)||!zero(p.y-l2.y)||!zero(p.z-l2.z));
}

//判点是否在空间三角形上,包括边界,三点共线无意义
int dot_inplane_in(point3 p,plane3 s){
    return zero(vlen(xmult(subt(s.a,s.b),subt(s.a,s.c)))-vlen(xmult(subt(p,s.a),subt(p,s.b)))-
        vlen(xmult(subt(p,s.b),subt(p,s.c)))-vlen(xmult(subt(p,s.c),subt(p,s.a))));
}
int dot_inplane_in(point3 p,point3 s1,point3 s2,point3 s3){
    return zero(vlen(xmult(subt(s1,s2),subt(s1,s3)))-vlen(xmult(subt(p,s1),subt(p,s2)))-
        vlen(xmult(subt(p,s2),subt(p,s3)))-vlen(xmult(subt(p,s3),subt(p,s1))));
}

//判点是否在空间三角形上,不包括边界,三点共线无意义
int dot_inplane_ex(point3 p,plane3 s){
    return dot_inplane_in(p,s)&&vlen(xmult(subt(p,s.a),subt(p,s.b)))>eps&&
        vlen(xmult(subt(p,s.b),subt(p,s.c)))>eps&&vlen(xmult(subt(p,s.c),subt(p,s.a)))>eps;
}
int dot_inplane_ex(point3 p,point3 s1,point3 s2,point3 s3){
    return dot_inplane_in(p,s1,s2,s3)&&vlen(xmult(subt(p,s1),subt(p,s2)))>eps&&
        vlen(xmult(subt(p,s2),subt(p,s3)))>eps&&vlen(xmult(subt(p,s3),subt(p,s1)))>eps;
}

//判两点在线段同侧,点在线段上返回0,不共面无意义
int same_side(point3 p1,point3 p2,line3 l){
    return dmult(xmult(subt(l.a,l.b),subt(p1,l.b)),xmult(subt(l.a,l.b),subt(p2,l.b)))>eps;
}
int same_side(point3 p1,point3 p2,point3 l1,point3 l2){
    return dmult(xmult(subt(l1,l2),subt(p1,l2)),xmult(subt(l1,l2),subt(p2,l2)))>eps;
}

//判两点在线段异侧,点在线段上返回0,不共面无意义
int opposite_side(point3 p1,point3 p2,line3 l){
    return dmult(xmult(subt(l.a,l.b),subt(p1,l.b)),xmult(subt(l.a,l.b),subt(p2,l.b)))<-eps;
}
int opposite_side(point3 p1,point3 p2,point3 l1,point3 l2){
    return dmult(xmult(subt(l1,l2),subt(p1,l2)),xmult(subt(l1,l2),subt(p2,l2)))<-eps;
}

//判两点在平面同侧,点在平面上返回0
int same_side(point3 p1,point3 p2,plane3 s){
    return dmult(pvec(s),subt(p1,s.a))*dmult(pvec(s),subt(p2,s.a))>eps;
}
int same_side(point3 p1,point3 p2,point3 s1,point3 s2,point3 s3){
    return dmult(pvec(s1,s2,s3),subt(p1,s1))*dmult(pvec(s1,s2,s3),subt(p2,s1))>eps;
}

//判两点在平面异侧,点在平面上返回0
int opposite_side(point3 p1,point3 p2,plane3 s){
    return dmult(pvec(s),subt(p1,s.a))*dmult(pvec(s),subt(p2,s.a))<-eps;
}
int opposite_side(point3 p1,point3 p2,point3 s1,point3 s2,point3 s3){
    return dmult(pvec(s1,s2,s3),subt(p1,s1))*dmult(pvec(s1,s2,s3),subt(p2,s1))<-eps;
}

//判两直线平行
int parallel(line3 u,line3 v){
    return vlen(xmult(subt(u.a,u.b),subt(v.a,v.b)))<eps;
}
int parallel(point3 u1,point3 u2,point3 v1,point3 v2){
    return vlen(xmult(subt(u1,u2),subt(v1,v2)))<eps;
}

//判两平面平行
int parallel(plane3 u,plane3 v){
    return vlen(xmult(pvec(u),pvec(v)))<eps;
}
int parallel(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){
    return vlen(xmult(pvec(u1,u2,u3),pvec(v1,v2,v3)))<eps;
}

//判直线与平面平行
int parallel(line3 l,plane3 s){
    return zero(dmult(subt(l.a,l.b),pvec(s)));
}
int parallel(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
    return zero(dmult(subt(l1,l2),pvec(s1,s2,s3)));
}

//判两直线垂直
int perpendicular(line3 u,line3 v){
    return zero(dmult(subt(u.a,u.b),subt(v.a,v.b)));
}
int perpendicular(point3 u1,point3 u2,point3 v1,point3 v2){
    return zero(dmult(subt(u1,u2),subt(v1,v2)));
}

//判两平面垂直
int perpendicular(plane3 u,plane3 v){
    return zero(dmult(pvec(u),pvec(v)));
}
int perpendicular(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){
    return zero(dmult(pvec(u1,u2,u3),pvec(v1,v2,v3)));
}

//判直线与平面平行
int perpendicular(line3 l,plane3 s){
    return vlen(xmult(subt(l.a,l.b),pvec(s)))<eps;
}
int perpendicular(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
    return vlen(xmult(subt(l1,l2),pvec(s1,s2,s3)))<eps;
}

//判两线段相交,包括端点和部分重合
int intersect_in(line3 u,line3 v){
    if (!dots_onplane(u.a,u.b,v.a,v.b))
        return 0;
    if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b))
        return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u);
    return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u);
}
int intersect_in(point3 u1,point3 u2,point3 v1,point3 v2){
    if (!dots_onplane(u1,u2,v1,v2))
        return 0;
    if (!dots_inline(u1,u2,v1)||!dots_inline(u1,u2,v2))
        return !same_side(u1,u2,v1,v2)&&!same_side(v1,v2,u1,u2);
    return dot_online_in(u1,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(v1,u1,u2)||dot_online_in(v2,u1,u2);
}

//判两线段相交,不包括端点和部分重合
int intersect_ex(line3 u,line3 v){
    return dots_onplane(u.a,u.b,v.a,v.b)&&opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u);
}
int intersect_ex(point3 u1,point3 u2,point3 v1,point3 v2){
    return dots_onplane(u1,u2,v1,v2)&&opposite_side(u1,u2,v1,v2)&&opposite_side(v1,v2,u1,u2);
}

//判线段与空间三角形相交,包括交于边界和(部分)包含
int intersect_in(line3 l,plane3 s){
    return !same_side(l.a,l.b,s)&&!same_side(s.a,s.b,l.a,l.b,s.c)&&
        !same_side(s.b,s.c,l.a,l.b,s.a)&&!same_side(s.c,s.a,l.a,l.b,s.b);
}
int intersect_in(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
    return !same_side(l1,l2,s1,s2,s3)&&!same_side(s1,s2,l1,l2,s3)&&
        !same_side(s2,s3,l1,l2,s1)&&!same_side(s3,s1,l1,l2,s2);
}

//判线段与空间三角形相交,不包括交于边界和(部分)包含
int intersect_ex(line3 l,plane3 s){
    return opposite_side(l.a,l.b,s)&&opposite_side(s.a,s.b,l.a,l.b,s.c)&&
        opposite_side(s.b,s.c,l.a,l.b,s.a)&&opposite_side(s.c,s.a,l.a,l.b,s.b);
}
int intersect_ex(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
    return opposite_side(l1,l2,s1,s2,s3)&&opposite_side(s1,s2,l1,l2,s3)&&
        opposite_side(s2,s3,l1,l2,s1)&&opposite_side(s3,s1,l1,l2,s2);
}

//计算两直线交点,注意事先判断直线是否共面和平行!
//线段交点请另外判线段相交(同时还是要判断是否平行!)
point3 intersection(line3 u,line3 v){
    point3 ret=u.a;
    double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))
            /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
    ret.x+=(u.b.x-u.a.x)*t;
    ret.y+=(u.b.y-u.a.y)*t;
    ret.z+=(u.b.z-u.a.z)*t;
    return ret;
}
point3 intersection(point3 u1,point3 u2,point3 v1,point3 v2){
    point3 ret=u1;
    double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
            /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
    ret.x+=(u2.x-u1.x)*t;
    ret.y+=(u2.y-u1.y)*t;
    ret.z+=(u2.z-u1.z)*t;
    return ret;
}

//计算直线与平面交点,注意事先判断是否平行,并保证三点不共线!
//线段和空间三角形交点请另外判断
point3 intersection(line3 l,plane3 s){
    point3 ret=pvec(s);
    double t=(ret.x*(s.a.x-l.a.x)+ret.y*(s.a.y-l.a.y)+ret.z*(s.a.z-l.a.z))/
        (ret.x*(l.b.x-l.a.x)+ret.y*(l.b.y-l.a.y)+ret.z*(l.b.z-l.a.z));
    ret.x=l.a.x+(l.b.x-l.a.x)*t;
    ret.y=l.a.y+(l.b.y-l.a.y)*t;
    ret.z=l.a.z+(l.b.z-l.a.z)*t;
    return ret;
}
point3 intersection(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
    point3 ret=pvec(s1,s2,s3);
    double t=(ret.x*(s1.x-l1.x)+ret.y*(s1.y-l1.y)+ret.z*(s1.z-l1.z))/
        (ret.x*(l2.x-l1.x)+ret.y*(l2.y-l1.y)+ret.z*(l2.z-l1.z));
    ret.x=l1.x+(l2.x-l1.x)*t;
    ret.y=l1.y+(l2.y-l1.y)*t;
    ret.z=l1.z+(l2.z-l1.z)*t;
    return ret;
}

//计算两平面交线,注意事先判断是否平行,并保证三点不共线!
line3 intersection(plane3 u,plane3 v){
    line3 ret;
    ret.a=parallel(v.a,v.b,u.a,u.b,u.c)?intersection(v.b,v.c,u.a,u.b,u.c):intersection(v.a,v.b,u.a,u.b,u.c);
    ret.b=parallel(v.c,v.a,u.a,u.b,u.c)?intersection(v.b,v.c,u.a,u.b,u.c):intersection(v.c,v.a,u.a,u.b,u.c);
    return ret;
}
line3 intersection(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){
    line3 ret;
    ret.a=parallel(v1,v2,u1,u2,u3)?intersection(v2,v3,u1,u2,u3):intersection(v1,v2,u1,u2,u3);
    ret.b=parallel(v3,v1,u1,u2,u3)?intersection(v2,v3,u1,u2,u3):intersection(v3,v1,u1,u2,u3);
    return ret;
}

//点到直线距离
double ptoline(point3 p,line3 l){
    return vlen(xmult(subt(p,l.a),subt(l.b,l.a)))/distance(l.a,l.b);
}
double ptoline(point3 p,point3 l1,point3 l2){
    return vlen(xmult(subt(p,l1),subt(l2,l1)))/distance(l1,l2);
}

//点到平面距离
double ptoplane(point3 p,plane3 s){
    return fabs(dmult(pvec(s),subt(p,s.a)))/vlen(pvec(s));
}
double ptoplane(point3 p,point3 s1,point3 s2,point3 s3){
    return fabs(dmult(pvec(s1,s2,s3),subt(p,s1)))/vlen(pvec(s1,s2,s3));
}

//直线到直线距离
double linetoline(line3 u,line3 v){
    point3 n=xmult(subt(u.a,u.b),subt(v.a,v.b));
    return fabs(dmult(subt(u.a,v.a),n))/vlen(n);
}
double linetoline(point3 u1,point3 u2,point3 v1,point3 v2){
    point3 n=xmult(subt(u1,u2),subt(v1,v2));
    return fabs(dmult(subt(u1,v1),n))/vlen(n);
}

//两直线夹角cos值
double angle_cos(line3 u,line3 v){
    return dmult(subt(u.a,u.b),subt(v.a,v.b))/vlen(subt(u.a,u.b))/vlen(subt(v.a,v.b));
}
double angle_cos(point3 u1,point3 u2,point3 v1,point3 v2){
    return dmult(subt(u1,u2),subt(v1,v2))/vlen(subt(u1,u2))/vlen(subt(v1,v2));
}

//两平面夹角cos值
double angle_cos(plane3 u,plane3 v){
    return dmult(pvec(u),pvec(v))/vlen(pvec(u))/vlen(pvec(v));
}
double angle_cos(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){
    return dmult(pvec(u1,u2,u3),pvec(v1,v2,v3))/vlen(pvec(u1,u2,u3))/vlen(pvec(v1,v2,v3));
}

//直线平面夹角sin值
double angle_sin(line3 l,plane3 s){
    return dmult(subt(l.a,l.b),pvec(s))/vlen(subt(l.a,l.b))/vlen(pvec(s));
}
double angle_sin(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
    return dmult(subt(l1,l2),pvec(s1,s2,s3))/vlen(subt(l1,l2))/vlen(pvec(s1,s2,s3));
}

int main() {
//    freopen("data3.txt", "r", stdin);
    int T;
    cin >> T;
    while (T--) {
        point3 a[2], b[2];
        scanf("%lf%lf%lf", &a[0].x, &a[0].y, &a[0].z);
        scanf("%lf%lf%lf", &a[1].x, &a[1].y, &a[1].z);
        scanf("%lf%lf%lf", &b[0].x, &b[0].y, &b[0].z);
        scanf("%lf%lf%lf", &b[1].x, &b[1].y, &b[1].z);
        point3 dir = xmult(subt(a[0], a[1]), subt(b[0], b[1])); //叉积与两直线垂直的向量
        double dis = 0;
        if (vlen(dir) > eps) { //判断共面
            double d = 1 / vlen(dir);
            dir.x = dir.x * d;
            dir.y = dir.y * d;
            dir.z = dir.z * d;
            dis = dmult(subt(a[0], b[0]), dir); //与单位向量的点积为这个方向的长度
            dir.x = dir.x * dis;
            dir.y = dir.y * dis;
            dir.z = dir.z * dis;
        }
        printf("%.6f\n", fabs(dis));
        point3 pa = intersection(a[0], a[1], plusv(b[0], dir),plusv(b[1], dir));
        point3 pb = subt(pa, dir);
        printf("%lf %lf %lf %lf %lf %lf\n", pa.x, pa.y, pa.z, pb.x, pb.y, pb.z);
    }
    return 0;
}

 

posted @ 2013-11-14 17:38  匡时@下一站.info  阅读(279)  评论(0编辑  收藏  举报