[hash-bfs]USACO 3.2 Magic Squares 魔板
魔 板 魔板 魔板
题目描述
在成功地发明了魔方之后,拉比克先生发明了它的二维版本,称作魔板。这是一张有8个大小相同的格子的魔板:
1 2 3 4
8 7 6 5
我们知道魔板的每一个方格都有一种颜色。这8种颜色用前8个正整数来表示。可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示。这是基本状态。
这里提供三种基本操作,分别用大写字母“A”,“B”,“C”来表示(可以通过这些操作改变魔板的状态):
“A”:交换上下两行;
“B”:将最右边的一列插入最左边;
“C”:魔板中央四格作顺时针旋转。
下面是对基本状态进行操作的示范:
A: 8 7 6 5
1 2 3 4
B: 4 1 2 3
5 8 7 6
C: 1 7 2 4
8 6 3 5
对于每种可能的状态,这三种基本操作都可以使用。
你要编程计算用最少的基本操作完成基本状态到目标状态的转换,输出基本操作序列。
输入
只有一行,包括8个整数,用空格分开(这些整数在范围 1——8 之间),表示目标状态。
输出
Line 1: 包括一个整数,表示最短操作序列的长度。
Line 2: 在字典序中最早出现的操作序列,用字符串表示,除最后一行外,每行输出60个字符。
样例输入
2 6 8 4 5 7 3 1
样例输出
7
BCABCCB
解析
BFS加上hash表
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxx=100003;
const int rule[3][8]={{8,7,6,5,4,3,2,1},{4,1,2,3,6,7,8,5},{1,7,2,4,5,3,6,8}};
int fa[maxx],num[maxx],xx,h,t;
string st[maxx],ss,hs[maxx];
char q[maxx];
bool hash(string s){
int ans=0;
for(int i=0;i<8;i++){
ans=(ans*8)+(ans*2)+s[i]-48;
}
int i=0;
ans%=maxx;
while(i<maxx&&hs[(i+ans)%maxx]!=""&&hs[(i+ans)%maxx]!=s){
i++;
}
if(hs[(i+ans)%maxx]==""){
hs[(i+ans)%maxx]=s;
return false;
}
else return true;
}
void bfs(){
hash("12345678");
st[1]="12345678";
h=0;t=1;
while(h<t){
h++;
for(int i=0;i<3;i++){
t++;
fa[t]=h;
st[t]="";
num[t]=num[h]+1;
if(i==0) q[t]='A';
else if(i==1) q[t]='B';
else if(i==2) q[t]='C';
for(int j=0;j<8;j++){
st[t]+=st[h][rule[i][j]-1];
}
if(hash(st[t])) t--;
else if(st[t]==ss) return;
}
}
}
void write(int x){
if(x==1) return;
write(fa[x]);
printf("%c",q[x]);
}
int main(){
for(int i=0;i<=7;i++){
scanf("%d",&xx);
ss+=xx+48;
}
if(ss=="12345678") printf("0");
else{
bfs();
printf("%d\n",num[t]);
write(t);
}
return 0;
}