[树形DP]战略游戏
战 略 游 戏 战略游戏 战略游戏
题目描述
Bob喜欢玩电脑游戏,特别是战略游戏。但是他经常无法找到快速玩过游戏的办法。现在他有个问题。他要建立一个古城堡,城堡中的路形成一棵树。他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能了望到所有的路。注意,某个士兵在一个结点上时,与该结点相连的所有边将都可以被了望到。
请你编一程序,给定一树,帮Bob计算出他需要放置最少的士兵。
输入
输入文件中数据表示一棵树,描述如下:
第一行 N,表示树中结点的数目。
第二行至第N+1行,每行描述每个结点信息,依次为:该结点标号i,k(后面有k条边与结点I相连),接下来k个数,分别是每条边的另一个结点标号r1,r2,…,rk。
对于一个n(0 < n <= 1500)个结点的树,结点标号在0到n-1之间,在输入文件中每条边只出现一次。
输出
输出文件仅包含一个数,为所求的最少的士兵数目。
例如,对于如右图所示的树:
答案为1(只要一个士兵在结点1上)。
样例输入
4
0 1 1
1 2 2 3
2 0
3 0
样例输出
1
code
#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
long long n,x1,y1,tot,head[200005],f[200005][2],b[200005];
struct stu
{
long long x,to,next;
}a[200005];
void add(int x,int y)
{
tot++;
a[tot].x=x;
a[tot].to=y;
a[tot].next=head[x];
head[x]=tot;
}
void dp(int ss)
{
f[ss][1]=1;
f[ss][0]=0;
b[ss]=1;
for(int i=head[ss];i;i=a[i].next)
{
if(b[a[i].to]==1)continue;
b[a[i].to]=1;
dp(a[i].to);
f[ss][0]=f[ss][0]+f[a[i].to][1];
f[ss][1]=min(f[a[i].to][0],f[a[i].to][1])+f[ss][1];
}
}
int main()
{
scanf("%lld",&n);
for(int i=1;i<=n;i++)
{
scanf("%lld%lld",&x1,&y1);
for(int i=1;i<=y1;++i){
long long tk;
scanf("%lld",&tk);
add(x1,tk);
add(tk,x1);
}
}
dp(1);
printf("%d",min(f[1][0],f[1][1]));
}