[状压DP]子矩阵
子 矩 阵 子矩阵 子矩阵
题目描述
给出如下定义:
- 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵
如,下面左图中选取第 2 、 4 2、4 2、4行和第 2 、 4 、 5 2、4、5 2、4、5列交叉位置的元素得到一个 2 × 3 2×3 2×3的子矩阵如右图所示。
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1
的其中一个 2 × 3 2×3 2×3的子矩阵是
4 7 4
8 6 9
-
相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的。
-
矩阵的分值:矩阵中每一对相邻元素之差的绝对值之和。
本题任务:给定一个 n n n行 m m m列的正整数矩阵,请你从这个矩阵中选出一个 r r r行 c c c列的子矩阵,使得这个子矩阵的分值最小,并输出这个分值。
(本题目为2014NOIP普及T4)
输入
第一行包含用空格隔开的四个整数 n , m , r , c n,m,r,c n,m,r,c,意义如问题描述中所述,每两个整数之间用一个空格隔开。
接下来的 n n n行,每行包含 m m m个用空格隔开的整数,用来表示问题描述中那个 n n n行 m m m列的矩阵。
输出
一个整数,表示满足题目描述的子矩阵的最小分值。
样例输入
5 5 2 3
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1
样例输出
6
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,r,c,a[20][20];
int type[15010],cnt,nm[15010][20],ans;
int sum[20][15010],g[20][20][15010],f[20][20][15010];
inline int abss(int x)
{
if(x>=0) return x;
return -x;
}
void dfs(int x,int t,int k)
{
if(x==m+1)
{
if(t==c) type[++cnt]=k;
return;
}
dfs(x+1,t+1,k+(1<<(x-1)));
dfs(x+1,t,k);
}
int main()
{
int i,j;
scanf("%d%d%d%d",&n,&m,&r,&c);
for(i=1;i<=n;++i)
for(j=1;j<=m;++j)
scanf("%d",&a[i][j]);
dfs(1,0,0);
for(i=1;i<=cnt;++i)
for(j=0;j<m;++j)
if(nm[i][0]==c) break;
else
if(type[i]&(1<<j)) nm[i][++nm[i][0]]=j+1;
for(i=1;i<=n;++i)
for(j=1;j<=cnt;++j)
for(int k=2;k<=c;++k)
sum[i][j]+=abss(a[i][nm[j][k-1]]-a[i][nm[j][k]]);
for(i=1;i<n;++i)
for(j=i+1;j<=n;++j)
for(int k=1;k<=cnt;++k)
for(int l=1;l<=c;++l)
g[i][j][k]+=abss(a[i][nm[k][l]]-a[j][nm[k][l]]);
memset(f,127/3,sizeof(f));
for(i=1;i<=n;++i)
for(j=1;j<=cnt;++j)
f[i][0][j]=0,f[i][1][j]=sum[i][j];
for(i=2;i<=n;++i)
for(j=2;j<=min(r,i);++j)
for(int k=1;k<=cnt;++k)
for(int l=1;l<i;++l)
f[i][j][k]=min(f[i][j][k],f[l][j-1][k]+g[l][i][k]+sum[i][k]);
ans=0x7fffffff;
for(i=r;i<=n;++i)
for(j=1;j<=cnt;++j)
ans=min(ans,f[i][r][j]);
printf("%d\n",ans);
return 0;
}